Skip to main content
Log in

Analytical Solution of 1-Dimensional Peridynamic Equation of Motion

  • Original Articles
  • Published:
Journal of Peridynamics and Nonlocal Modeling Aims and scope Submit manuscript

Abstract

Peridynamics has been introduced to overcome limitations of classical continuum mechanics. Peridynamic equations of motion are in the form of integro-differential equations and analytical solutions of these equations are limited in the literature. In this study, a new analytical solution methodology for 1-dimensional peridynamic equation of motion is presented by utilising inverse Fourier transform. Analytical solutions for both static and dynamic conditions are obtained. Moreover, different boundary conditions including fixed-fixed and fixed-free are considered. Several numerical cases are demonstrated to show the capability of the presented methodology and peridynamic results are compared against results obtained from classical continuum mechanics. A very good agreement between these two different approaches is observed which shows the capability of the current approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    Article  MathSciNet  MATH  Google Scholar 

  2. Madenci E, Oterkus E (2014) Peridynamic theory and its applications. Springer, New York, NY

    Book  MATH  Google Scholar 

  3. Wu CT, Ren B (2015) A stabilized non-ordinary state-based peridynamics for the nonlocal ductile material failure analysis in metal machining process. Comput Methods Appl Mech Eng 291:197–215

    Article  MathSciNet  MATH  Google Scholar 

  4. Sun C, Huang Z (2016) Peridynamic simulation to impacting damage in composite laminate. Compos Struct 138:335–341

    Article  Google Scholar 

  5. Diyaroglu C, Oterkus E, Madenci E, Rabczuk T, Siddiq A (2016) Peridynamic modeling of composite laminates under explosive loading. Compos Struct 144:14–23

    Article  Google Scholar 

  6. Gerstle W, Sau N, Silling S (2007) Peridynamic modeling of concrete structures. Nucl Eng Des 237(12–13):1250–1258

    Article  Google Scholar 

  7. Oterkus E, Guven I, Madenci E (2012) Impact damage assessment by using peridynamic theory. Cent Eur J Eng 2(4):523–531

    Google Scholar 

  8. Cheng Z, Liu Y, Zhao J, Feng H, Wu Y (2018) Numerical simulation of crack propagation and branching in functionally graded materials using peridynamic modeling. Eng Fract Mech 191:13–32

    Article  Google Scholar 

  9. Ozdemir M, Kefal A, Imachi M, Tanaka S, Oterkus E (2020) Dynamic fracture analysis of functionally graded materials using ordinary state-based peridynamics. Compos Struct 244:112296

  10. Silling SA, D’Elia M, Yu Y, You H, Fermen-Coker M (2022) Peridynamic model for single-layer graphene obtained from coarse-grained bond forces. J Peridyn Nonlocal Model 1–22

  11. Liu X, He X, Wang J, Sun L, Oterkus E (2018) An ordinary state-based peridynamic model for the fracture of zigzag graphene sheets. Proc R Soc Math Phys Eng Sci 474(2217):20180019

    MathSciNet  MATH  Google Scholar 

  12. Liu RW, Xue YZ, Lu XK, Cheng WX (2018) Simulation of ship navigation in ice rubble based on peridynamics. Ocean Eng 148:286–298

    Article  Google Scholar 

  13. Vazic B, Oterkus E, Oterkus S (2020) Peridynamic model for a Mindlin plate resting on a Winkler elastic foundation. J Peridyn Nonlocal Model 2(3):229–242

    Article  MathSciNet  MATH  Google Scholar 

  14. Madenci E, Oterkus S (2016) Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening. J Mech Phys Solids 86:192–219

    Article  MathSciNet  Google Scholar 

  15. Huang Y, Oterkus S, Hou H, Oterkus E, Wei Z, Zhang S (2019) Peridynamic model for visco-hyperelastic material deformation in different strain rates. Contin Mech Thermodyn 1–35

  16. Amani J, Oterkus E, Areias P, Zi G, Nguyen-Thoi T, Rabczuk T (2016) A non-ordinary state-based peridynamics formulation for thermoplastic fracture. Int J Impact Eng 87:83–94

    Article  Google Scholar 

  17. Yang Z, Oterkus E, Oterkus S (2021) Peridynamic higher-order beam formulation. J Peridyn Nonlocal Model 3(1):67–83

    Article  MathSciNet  MATH  Google Scholar 

  18. Dorduncu M (2019) Stress analysis of laminated composite beams using refined zigzag theory and peridynamic differential operator. Compos Struct 218:193–203

    Article  Google Scholar 

  19. Yang Z, Vazic B, Diyaroglu C, Oterkus E, Oterkus S (2020) A Kirchhoff plate formulation in a state-based peridynamic framework. Math Mech Solids 25(3):727–738

    Article  MathSciNet  MATH  Google Scholar 

  20. Naumenko K, Eremeyev VA (2022) A non-linear direct peridynamics plate theory. Compos Struct 279:114728

    Article  Google Scholar 

  21. Dorduncu M (2020) Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory. Thin-Walled Struct 146:106468

  22. Chowdhury SR, Roy P, Roy D, Reddy JN (2016) A peridynamic theory for linear elastic shells. Int J Solids Struct 84:110–132

    Article  Google Scholar 

  23. Jung J, Seok J (2017) Mixed-mode fatigue crack growth analysis using peridynamic approach. Int J Fatigue 103:591–603

    Article  Google Scholar 

  24. Nguyen CT, Oterkus S, Oterkus E (2021) An energy-based peridynamic model for fatigue cracking. Eng Fract Mech 241:107373

  25. Heo J, Yang Z, Xia W, Oterkus S, Oterkus E (2020) Buckling analysis of cracked plates using peridynamics. Ocean Eng 214:107817

  26. Kefal A, Sohouli A, Oterkus E, Yildiz M, Suleman A (2019) Topology optimization of cracked structures using peridynamics. Continuum Mech Thermodyn 31(6):1645–1672

    Article  MathSciNet  Google Scholar 

  27. Imachi M, Tanaka S, Ozdemir M, Bui TQ, Oterkus S, Oterkus E (2020) Dynamic crack arrest analysis by ordinary state-based peridynamics. Int J Fract 221(2):155–169

    Article  Google Scholar 

  28. Vazic B, Wang H, Diyaroglu C, Oterkus S, Oterkus E (2017) Dynamic propagation of a macrocrack interacting with parallel small cracks. AIMS Mater Sci 4(1):118–136

    Article  MATH  Google Scholar 

  29. Diyaroglu C, Oterkus S, Oterkus E, Madenci E, Han S, Hwang Y (2017) Peridynamic wetness approach for moisture concentration analysis in electronic packages. Microelectron Reliab 70:103–111

    Article  Google Scholar 

  30. De Meo D, Russo L, Oterkus E (2017) Modeling of the onset, propagation, and interaction of multiple cracks generated from corrosion pits by using peridynamics. J Eng Mater Technol 139(4):041001

    Article  Google Scholar 

  31. Shi C, Gong Y, Yang ZG, Tong Q (2019) Peridynamic investigation of stress corrosion cracking in carbon steel pipes. Eng Fract Mech 219:106604

  32. Javili A, Morasata R, Oterkus E, Oterkus S (2019) Peridynamics review. Math Mech Solids 24(11):3714–3739

    Article  MathSciNet  MATH  Google Scholar 

  33. Mikata Y (2012) Analytical solutions of peristatic and peridynamic problems for a 1D infinite rod. Int J Solids Struct 49(21):2887–2897

    Article  Google Scholar 

  34. Mikata Y (2021) Peridynamics for fluid mechanics and acoustics. Acta Mech 232(8):3011–3032

    Article  MathSciNet  MATH  Google Scholar 

  35. Silling SA, Zimmermann M, Abeyaratne R (2003) Deformation of a peridynamic bar. J Elast 73(1):173–190

    Article  MathSciNet  MATH  Google Scholar 

  36. Weckner O, Abeyaratne R (2005) The effect of long-range forces on the dynamics of a bar. J Mech Phys Solids 53(3):705–728

    Article  MathSciNet  MATH  Google Scholar 

  37. Weckner O, Brunk G, Epton MA, Silling SA, Askari E (2009) Green’s functions in non-local three-dimensional linear elasticity. Proc R Soc Math Phys Eng Sci 465(2111):3463–3487

    MathSciNet  MATH  Google Scholar 

  38. Aksoylu B, Gazonas GA (2020) On nonlocal problems with inhomogeneous local boundary conditions. J Peridyn Nonlocal Model 2(1):1–25

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghao Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Ma, CC., Oterkus, E. et al. Analytical Solution of 1-Dimensional Peridynamic Equation of Motion. J Peridyn Nonlocal Model 5, 356–374 (2023). https://doi.org/10.1007/s42102-022-00086-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42102-022-00086-1

Keywords

Navigation