Skip to main content

Advertisement

Log in

Peridynamics for Data Estimation, Image Compression/Recovery, and Model Reduction

  • Original Articles
  • Published:
Journal of Peridynamics and Nonlocal Modeling Aims and scope Submit manuscript

Abstract

The existing interpolation and regression methods are highly data-specific, challenge-specific, or approach-specific. Peridynamic approach provides a single mathematical framework for diverse data-sets and multi-dimensional data manipulation and model order reduction. The mathematical framework based on the Peridynamic Differential Operator (PDDO) provides a unified approach to transfer information within a set of discrete data, and among data sets in multi-dimensional space. The robustness and capability of this approach have been demonstrated by considering various real or fabricated data concerning two- or three-dimensional applications. The numerical results concern interpolation of real data in two and three dimensions, interpolation to approximate a three-dimensional function, adaptive data recovery in three-dimensional space, recovery of missing pixels in an image, adaptive image compression and recovery, and free energy evaluation through model reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Franke R (1982) Scattered data interpolation: Tests of some methods. Math Comput 38:181–200

    MathSciNet  MATH  Google Scholar 

  2. Mittas L, Mitasova H (1999) Spatial interpolation. In: Longley PI, Goodchild MF, Maguire DJ, Rhind DW (eds) Geographical Information Systems: Principles. Wiley, Techniques, Management and Applications, GeoInformation International, pp 481–492

    Google Scholar 

  3. Steffensen JF (2006) Interpolation, 2nd edn. Dover Publications

    MATH  Google Scholar 

  4. Cressie N (2015) Statistics for spatial data, Revised. John Wiley & Sons

    MATH  Google Scholar 

  5. Liszka T, Orkisz J (1980) The finite difference method at arbitrary irregular grids and its applications in applied mechanics. Comp Struct 11:83–95

    Article  MathSciNet  Google Scholar 

  6. Liszka T (1984) An interpolation method for irregular net of nodes. Int J Numer Meth In Engr 20:1599–1612

    Article  Google Scholar 

  7. Madenci E, Barut A, Futch M (2016) Peridynamic differential operator and its applications. Comp Meth Appl Mech Eng 306:408–451

    Article  MathSciNet  Google Scholar 

  8. Madenci E, Barut A, Dorduncu M (2019) Peridynamic differential operator for numerical analysis. Springer, New York

    Book  Google Scholar 

  9. Madenci E, Barut A, Dorduncu M (2019) Peridynamics for predicting thermal expansion coefficient of grapheme. 69th Electronic Components & Technology Conference, Las Vegas, NV

  10. Madenci E, Barut A, Prohit P (2020) A Peridynamic approach to computation of elastic and entropic interactions of inclusions on a lipid membrane. J Mech Phys Solids 104046

  11. https://www.ncdc.noaa.gov/cdo-web/search?datasetid=GHCND

  12. https://the.me/the-story-of-lena/

  13. Su T, Purohit PK (2010) Thermomechanics of a heterogeneous fluctuating chain. J Mech Phys Solids 58:164–186

    Article  MathSciNet  Google Scholar 

  14. Boal D (2002) Mechanics of the cell. Cambridge University Press, Cambridge, UK

    Google Scholar 

  15. Zhang Y, Crothers DM (2003) Statistical mechanics of sequence-dependent circular DNA and its application for DNA cyclization. Biophys J 84:136–153

    Article  Google Scholar 

Download references

Funding

This study was performed as part of the ongoing research at the MURI Center for Material Failure Prediction through Peridynamics at the University of Arizona (AFOSR Grant No. FA9550-14-1-0073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdogan Madenci.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1 Peridynamic differential operator

According to the 2-order TSE in a 2-dimensional space, the following expression holds

$$f\left(\mathbf{x}+\xi \right)=f\left(\mathbf{x}\right)+{\xi }_{1}\frac{\partial f\left(\mathbf{x}\right)}{\partial {x}_{1}}+{\xi }_{2}\frac{\partial f\left(\mathbf{x}\right)}{\partial {x}_{2}}+\frac{1}{2!}{\xi }_{1}^{2}\frac{{\partial }^{2}f\left(\mathbf{x}\right)}{\partial {x}_{1}^{2}}+\frac{1}{2!}{\xi }_{2}^{2}\frac{{\partial }^{2}f\left(\mathbf{x}\right)}{\partial {x}_{2}^{2}}+{\xi }_{1}{\xi }_{2}\frac{{\partial }^{2}f\left(\mathbf{x}\right)}{\partial {x}_{1}\partial {x}_{2}}+R$$
(97)

where R is the small remainder term. Multiplying each term with PD functions, \({g}_{2}^{{p}_{1}{p}_{2}}(\xi )\), and integrating over the domain of interaction (family), \({H}_{\mathbf{x}}\), results in

$$\begin{array}{c}\underset{{H}_{x}}{\int }f(\mathbf{x}+\xi ){g}_{2}^{\,{p}_{1}{p}_{2}}(\xi )dV=f\left(\mathbf{x}\right)\underset{{H}_{\mathbf{x}}}{\int }{g}_{2}^{\,{p}_{1}{p}_{2}}(\xi )d{H}_{{\mathbf{x}}^{{\prime}}}+\frac{\partial f\left(\mathbf{x}\right)}{\partial {x}_{1}}\underset{{H}_{\mathbf{x}}}{\int }{\xi }_{1}{g}_{2}^{\,{p}_{1}{p}_{2}}(\xi )d{H}_{{\mathbf{x}}^{{\prime}}}\\ +\frac{\partial f\left(\mathbf{x}\right)}{\partial {x}_{2}}\underset{{H}_{\mathbf{x}}}{\int }{\xi }_{2}{g}_{2}^{\,{p}_{1}{p}_{2}}(\xi )d{H}_{{\mathbf{x}}^{^{\prime}}}+\frac{{\partial }^{2}f\left(\mathbf{x}\right)}{\partial {x}_{1}^{2}}\underset{{H}_{\mathbf{x}}}{\int }\frac{1}{2!}{\xi }_{1}^{2}{g}_{2}^{\,{p}_{1}{p}_{2}}(\xi )d{H}_{{\mathbf{x}}^{{\prime}}}\\ +\frac{{\partial }^{2}f\left(\mathbf{x}\right)}{\partial {x}_{2}^{2}}\underset{{H}_{\mathbf{x}}}{\int }\frac{1}{2!}{\xi }_{2}^{2}{g}_{2}^{\,{p}_{1}{p}_{2}}(\xi )d{H}_{{\mathbf{x}}^{{\prime}}}+\frac{{\partial }^{2}f\left(\mathbf{x}\right)}{\partial {x}_{1}\partial {x}_{2}}\underset{{H}_{\mathbf{x}}}{\int }{\xi }_{1}{\xi }_{2}{g}_{2}^{\,{p}_{1}{p}_{2}}(\xi )d{H}_{{\mathbf{x}}^{{\prime}}}\end{array}$$
(98)

in which the point x is not necessarily symmetrically located in the domain of interaction. The initial relative position, \(\xi\), between the material points and \({\mathbf{x}}^{{\prime}}\) can be expressed as \(\xi =\mathbf{x}-{\mathbf{x}}^{{\prime}}\). This ability permits each point to have its own unique family with an arbitrary position. Therefore, the size and shape of each family can be different, and they significantly influence the degree of non-locality. The degree of the interaction between the material points in each family is specified by a non-dimensional weight function, \(w(\left|\xi \right|)\), which can vary from point to point. The interactions become more local with a decreasing family size. Thus, the family size and shape are important parameters. In general, the family of a point can be non-symmetric due to non-uniform spatial discretization. Each point has its own family members in the domain of interaction (family), and occupies an infinitesimally small entity such as volume, area, or a distance.

The PD functions are constructed such that they are orthogonal to each term in the TS expansion as

$$\frac{1}{{n}_{1}!{n}_{2}!}\underset{{H}_{\mathbf{x}}}{\int }{\xi }_{1}^{{n}_{1}}{\xi }_{2}^{{n}_{2}}{g}_{2}^{\,{p}_{1}{p}_{2}}(\xi )dV={\delta }_{{n}_{1}{p}_{1}}{\delta }_{{n}_{2}{p}_{2}}$$
(99)

with \(({n}_{1},{n}_{2},p,q=\mathrm{0,1},2)\) and \({\delta }_{{n}_{i}{p}_{i}}\) is a Kronecker symbol.

Enforcing the orthogonality conditions in the TSE leads to the non-local PD representation of the function itself and its derivatives as

$$f(\mathbf{x})=\underset{{H}_{\mathbf{x}}}{\int }f(\mathbf{x}+\xi ){g}_{2}^{00}(\xi )d{H}_{{\mathbf{x}}^{{\prime}}}$$
(100)
$$\left\{\begin{array}{c}\frac{\partial f(\mathbf{x})}{\partial {x}_{1}}\\ \frac{\partial f(\mathbf{x})}{\partial {x}_{2}}\end{array}\right\}=\underset{{H}_{\mathbf{x}}}{\int }f(\mathbf{x}+\xi )\left\{\begin{array}{c}{g}_{2}^{10}(\xi )\\ {g}_{2}^{01}(\xi )\end{array}\right\}d{H}_{{\mathbf{x}}^{{\prime}}}$$
(101)
$$\left\{\begin{array}{c}\frac{{\partial }^{2}f(\mathbf{x})}{\partial {x}_{1}^{2}}\\ \frac{{\partial }^{2}f(\mathbf{x})}{\partial {x}_{2}^{2}}\\ \frac{{\partial }^{2}f(\mathbf{x})}{\partial {x}_{1}\partial {x}_{2}}\end{array}\right\}=\underset{{H}_{\mathbf{x}}}{\int }f(\mathbf{x}+\xi )\left\{\begin{array}{c}{g}_{2}^{20}(\xi )\\ {g}_{2}^{02}(\xi )\\ {g}_{2}^{11}(\xi )\end{array}\right\}d{H}_{{\mathbf{x}}^{{\prime}}}$$
(102)

The PD functions can be constructed as a linear combination of polynomial basis functions:

$$\begin{array}{c}{g}_{2}^{\,{p}_{1}{p}_{2}}(\xi )={a}_{00}^{\,{p}_{1}{p}_{2}}{w}_{00}(\left|\xi \right|)+{a}_{10}^{\,{p}_{1}{p}_{2}}{w}_{10}(\left|\xi \right|){\xi }_{1}+{a}_{01}^{\,{p}_{1}{p}_{2}}{w}_{01}(\left|\xi \right|){\xi }_{2}\\ +{a}_{20}^{\,{p}_{1}{p}_{2}}{w}_{20}(\left|\xi \right|){\xi }_{1}^{2}+{a}_{02}^{\,{p}_{1}{p}_{2}}{w}_{02}(\left|\xi \right|){\xi }_{2}^{2}+{a}_{11}^{\,{p}_{1}{p}_{2}}{w}_{11}(\left|\xi \right|){\xi }_{1}{\xi }_{2}\end{array}$$
(103)

where \({a}_{{q}_{1}{q}_{2}}^{\,{p}_{1}{p}_{2}}\) are the unknown coefficients, \({w}_{{q}_{1}{q}_{2}}(\left|\xi \right|)\) are the influence functions, and \({\xi }_{1}\) and \({\xi }_{2}\) are the components of the vector \(\xi\). Assuming \({w}_{{p}_{1}{p}_{2}}(\left|\xi \right|)=w(\left|\xi \right|)\) and submitting the PD functions into the orthogonality equation lead to a system of algebraic equations for the determination of the coefficients as

$$\mathbf{A}\mathbf{a}=\mathbf{b}$$
(104)

in which

$$\mathbf{A}=\underset{{H}_{\mathbf{x}}}{\int }w\left(\left|\xi \right|\right)\left[\begin{array}{cccccc}1& {\xi }_{1}& {\xi }_{2}& {\xi }_{1}^{2}& {\xi }_{2}^{2}& {\xi }_{1}{\xi }_{2}\\ {\xi }_{1}& {\xi }_{1}^{2}& {\xi }_{1}{\xi }_{2}& {\xi }_{1}^{3}& {\xi }_{1}{\xi }_{2}^{2}& {\xi }_{1}^{2}{\xi }_{2}\\ {\xi }_{2}& {\xi }_{1}{\xi }_{2}& {\xi }_{2}^{2}& {\xi }_{1}^{2}{\xi }_{2}& {\xi }_{2}^{3}& {\xi }_{1}{\xi }_{2}^{2}\\ {\xi }_{1}^{2}& {\xi }_{1}^{3}& {\xi }_{1}^{2}{\xi }_{2}& {\xi }_{1}^{4}& {\xi }_{1}^{2}{\xi }_{2}^{2}& {\xi }_{1}^{3}{\xi }_{2}\\ {\xi }_{2}^{2}& {\xi }_{1}{\xi }_{2}^{2}& {\xi }_{2}^{3}& {\xi }_{1}^{2}{\xi }_{2}^{2}& {\xi }_{2}^{4}& {\xi }_{1}{\xi }_{2}^{3}\\ {\xi }_{1}{\xi }_{2}& {\xi }_{1}^{2}{\xi }_{2}& {\xi }_{1}{\xi }_{2}^{2}& {\xi }_{1}^{3}{\xi }_{2}& {\xi }_{1}{\xi }_{2}^{3}& {\xi }_{1}^{2}{\xi }_{2}^{2}\end{array}\right]d{H}_{{\mathbf{x}}^{{\prime}}}$$
(105)
$$\mathbf{a}=\left[\begin{array}{cccccc}{a}_{00}^{00}& {a}_{00}^{10}& {a}_{00}^{01}& {a}_{00}^{20}& {a}_{00}^{02}& {a}_{00}^{11}\\ {a}_{10}^{00}& {a}_{10}^{10}& {a}_{10}^{01}& {a}_{10}^{20}& {a}_{10}^{02}& {a}_{10}^{11}\\ {a}_{01}^{00}& {a}_{01}^{10}& {a}_{01}^{01}& {a}_{01}^{20}& {a}_{01}^{02}& {a}_{01}^{11}\\ {a}_{20}^{00}& {a}_{20}^{10}& {a}_{20}^{01}& {a}_{20}^{20}& {a}_{20}^{02}& {a}_{20}^{11}\\ {a}_{02}^{00}& {a}_{02}^{10}& {a}_{02}^{01}& {a}_{02}^{20}& {a}_{02}^{02}& {a}_{02}^{11}\\ {a}_{11}^{00}& {a}_{11}^{10}& {a}_{11}^{01}& {a}_{11}^{20}& {a}_{11}^{02}& {a}_{11}^{11}\end{array}\right]$$
(106)

and

$$\mathbf{b}=\left[\begin{array}{cccccc}1& 0& 0& 0& 0& 0\\ 0& 1& 0& 0& 0& 0\\ 0& 0& 1& 0& 0& 0\\ 0& 0& 0& 2& 0& 0\\ 0& 0& 0& 0& 2& 0\\ 0& 0& 0& 0& 0& 1\end{array}\right]$$
(107)

After determining the coefficients \({a}_{{q}_{1}{q}_{2}}^{{p}_{1}{p}_{2}}\) via \(\mathbf{a}={\mathbf{A}}^{-1}\mathbf{b}\), then the PD functions \({g}_{2}^{{p}_{1}{p}_{2}}(\xi )\) can be constructed. The detailed derivations and the associated computer programs can be found in [8].

Appendix 2 Ordinary Kriging

As described by Cressie [4], the observed (known) data at spatial locations, \({s}_{1},.....,{s}_{n}\), are modeled as a random process denoted by \(Z(s)\) in ordinary Kriging. It is assumed that the random process satisfies the decomposition

$$Z(s)\equiv \mu +\delta (s)$$
(108)

where \(\mu\) is the expected value or mean of \(Z(s)\) and \(\delta (s)\) is the correlated error process. The mean, \(\mu\), is unknown; however, it is assumed to be a constant. The predictor is defined as

$$p\left(Z;B\right)= \sum\limits_{i=1}^{n}{\lambda }_{i}Z({{{s}}}_{i})$$
(109)

subject to the constraint of

$$\sum\limits_{i=1}^{n}{\lambda }_{i}=1$$
(110)

The parameter, B, is defined as a block of spatial area whose location and geometry are known. The optimal predictor is obtained by minimizing the mean-squared prediction error defined as

$${\sigma }_{e}^{2}\equiv E{(Z\left(B\right)-p\left(Z; B\right))}^{2}$$
(111)

with respect to the coefficients \({\lambda }_{i}\) with \(i=1,...,n\).

Appendix 3 Temperature Data from Weather Stations in Arizona

Weather station name

Elevation (m)

Latitude

Longitude

Temp. (°F)

Robson Ranch

455.7

32.8118

−111.6313

65

Tacna 3 NE

98.8

32.7225

−113.9191

68

Fry

2194.6

35.07

−111.84

52

Gunsight

1609.3

36.7044

−112.5833

50

Williams

2105.9

35.2413

−112.1929

56

Guthrie

1097.3

32.8819

−109.3092

53

Rincon

2511.6

32.2056

−110.5481

60

Frazier Wells

2063.5

35.8456

−113.055

52

Bisbee 1 WNW

1694.7

31.4475

−109.9288

61

Tempe ASU

355.7

33.4258

−111.9216

71

Wittmann 1 SE

513

33.7776

−112.523

71

Painted Desert National Park

1755.6

35.068

−109.7688

50

Union Pass

1072.9

35.2247

−114.3747

62

Humbug Creek

1600.2

34.1164

−112.3006

60

Hurricane

1659.6

36.6992

−113.2072

47

Saguaro National Park

938.8

32.1794

−110.7363

57

Willcox

1271

32.2553

−109.8369

58

Oak Creek

1500.8

34.9417

−111.7517

56

Greer

2499.4

34.06

−109.45

57

Safford Agricultural Center

900.4

32.815

−109.6808

63

Betatakin

2220.8

36.6778

−110.5411

44

Tohono Chul

770.2

32.3391

−110.9808

63

Empire

1417.3

31.7806

−110.6347

69

Four Springs

1999.5

36.7939

−112.0422

41

Teec Nos Pos

1612.4

36.9233

−109.09

42

Patagonia Paton Center

1232.6

31.53923

−110.76028

72

Payson

1516.4

34.2431

−111.3028

61

Chiricahua

1645.9

32

−109.35

62

Paria Point

2205.2

36.7278

−111.8219

49

Cherry

1554.5

34.5964

−112.0481

58

Sanders

1784

35.2239

−109.3222

52

San Carlos Reservoir

771.8

33.1819

−110.5261

46

Goodwin Mesa

1280.2

34.75

−113.3

63

Sunset Crater National Monument

2127.5

35.3694

−111.5436

42

Sunrise Mountain

2856

33.9733

−109.563

42

Flagstaff

2133.6

35.145

−111.675

56

Hopi

1885.5

35.8103

−110.2069

53

Selles

721.2

31.91

−111.8975

69

Iron Springs

1804.4

34.5853

−112.5019

61

Hopkins

2170.2

31.6753

−110.88

66

Tucson International Airport

776.9

32.1313

−110.9552

70

Mormon Mountain

2286

34.94

−111.52

53

Catalina State Park

825.1

32.4177

−110.9302

61

Sunset Point

902.2

34.1953

−112.1417

64

Tweeds Point

1585

36.5819

−113.7319

51

Douglas Bisbee Inter. Airport

1251.2

31.4583

−109.6061

66

St. Johns Industrial Air Park

1747.4

34.51833

−109.37917

52

Nixon Flats

1981.2

36.39

−113.1522

54

Black Rock

2158

36.7944

−113.7567

45

Tusayan

2042.2

35.99

−112.12

55

Stray Horse

2139.7

33.5406

−109.3169

56

Snowslide Canyon

2965.7

35.34

−111.65

47

Stanton

1097.3

34.1667

−112.7333

64

Olaf Knolls

883.9

36.5072

−113.8161

60

Kingman Airport

1042.4

35.2577

−113.933

63

Douglas

1231.4

31.345

−109.5394

66

Nogales 6 N

1054.9

31.4554

−110.968

73

Truxton Canyon

1630.7

35.7825

−113.7942

56

Lindbergh Hill

2682.2

36.2858

−112.0794

48

Bagdad

1199.4

34.5975

−113.1745

57

White Horse Lake

2188.5

35.14

−112.15

56

Alamo Dam

393.2

34.228

−113.5777

65

Walnut Creek

1551.4

34.9281

−112.8097

62

Walnut Canyon National Monument

2040.6

35.1721

−111.5097

43

Dry Lake

2264.1

33.3597

−109.8331

60

Casa Grande

426.7

32.8875

−111.7147

67

Duncan

1115.6

32.748

−109.1213

57

Dry Park

2653.6

36.45

−112.24

49

Heber Black Mesa Ranger Station

2008.6

34.3925

−110.558

56

Alpine

2447.8

33.8417

−109.1222

57

Prescott Love Field

1536.8

34.65167

−112.42083

62

Phoenix Airport

337.4

33.4277

−112.0038

68

Benson 6 SE

1124.7

31.8805

−110.2403

58

Yuma Proving Ground

98.8

32.8356

−114.3942

68

Winslow Airport

1489.3

35.0281

−110.7208

51

Fort Valley

2240.3

35.27

−111.74

56

Happy Jack Ranger Station

2279.9

34.7433

−111.4139

47

Bellemont Weather Forecast Office

2179.9

35.2302

−111.8221

50

Beaver Dam

588.6

36.9139

−113.9423

60

Sasabe

1094.2

31.483

−111.5436

75

Show Low Airport

1954.1

34.2639

−110.0075

50

Window Rock Airport

2054

35.6575

−109.06139

52

Moss Basin

1804.4

35.0336

−113.8925

58

Picacho 8 SE

603.8

32.6463

−111.4017

63

Jerome

1508.8

34.7522

−112.1114

49

Quartzsite

266.7

33.665

−114.2272

69

Page Municipal Airport

1313.7

36.92611

−111.44778

43

Warm Springs Canyon

2441.4

36.7

−112.23

51

Kitt Peak

2069.6

31.96018

−111.59787

60

Workman Creek

2103.1

33.81

−110.92

55

Yellow John Mountain

1877.6

36.1542

−113.5417

54

Carefree

771.1

33.8161

−111.9019

67

Grand Canyon National Park Airport

2013.5

35.94611

−112.15472

49

Montezuma Castle Nat.Monument

969.3

34.6105

−111.838

59

Scottsdale Municipal Airport

449

33.62278

−111.91056

68

Havasu

144.8

34.7872

−114.5617

69

Limestone Canyon

2072.6

34.1789

−110.2736

51

Kartchner Caverns

1429.5

31.8352

−110.3552

53

Buckskin Mountain

1950.7

36.9306

−112.1997

48

Mount Lemmon Willow Canyon

2141.8

32.3859

−110.69799

47

Apache Junction 5 NE

630.9

33.4625

−111.4813

66

Anvil Ranch

840.9

31.9793

−111.3837

63

Canyon de Chelly

1709.9

36.1533

−109.5394

47

Green Valley

883.9

31.893

−110.9977

59

Bright Angel Ranger Station

2438.4

36.2147

−112.0619

41

Organ Pipe Cactus Nat. Monument

511.5

31.9555

−112.8002

73

Fort Huachuca Pioneer Airfield

1453.3

31.60722

−110.42806

66

Globe

1112.5

33.3503

−110.6519

56

San Simon

1091.2

32.29329

−109.22691

61

Phantom Ranch

771.1

36.1066

−112.0947

58

Petrified Forest National Park

1659.9

34.7994

−109.885

49

Saint Johns

1764.8

34.5172

−109.4028

49

Meteor Crater

1687.1

35.0364

−111.0231

47

Music Mountain

1652

35.6147

−113.7939

56

Muleshoe Ranch

1272.5

32.4

−110.2708

67

Tombstone

1420.1

31.7119

−110.0686

56

Sierra Vista

1403.9

31.53699

−110.28073

53

Hilltop

1743.5

33.6183

−110.42

61

Elgin 5 S

1466.4

31.5907

−110.5087

67

Ajo

533.7

32.3698

−112.8599

66

Smith Peak

762

34.1158

−113.3472

65

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madenci, E., Barut, A., Willmarth, E. et al. Peridynamics for Data Estimation, Image Compression/Recovery, and Model Reduction. J Peridyn Nonlocal Model 4, 159–200 (2022). https://doi.org/10.1007/s42102-021-00072-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42102-021-00072-z

Keywords

Navigation