Skip to main content
Log in

The Variational Explanation of Poisson’s Ratio in Bond-Based Peridynamics and Extension to Nonlinear Poisson’s Ratio

  • Original Articles
  • Published:
Journal of Peridynamics and Nonlocal Modeling Aims and scope Submit manuscript

Abstract

It is commonly stated that the Poisson’s ratio associated with bond-based peridynamics is \(\tfrac{1}{4}\) for three-dimensional isotropic elasticity. This manuscript critically revisits this statement from a variational perspective for both two-dimensional and three-dimensional problems. To do so, a purely geometrical description of Poisson’s ratio is considered. Unlike the commonly established treatment of the problem, the Poisson’s ratio here is calculated via minimizing the internal energy density, rather than quantifying it and comparing it to its counterpart in classical linear elasticity. The advantage of the proposed approach is threefold. Firstly, elements of Cauchy linear elasticity such as “strain”, “stress” and “elastic parameters” are entirely absent throughout the derivations here. This is particularly important since peridynamics is a non-local formulation, and therefore, using local notions such as “strain” and “stress” implies locality and is misleading. Secondly, unbound by linear elasticity, the proposed approach unlocks the limitation of the analysis to small deformations. Hence, it can be immediately applied to large deformations, resulting in a nonlinear Poisson’s ratio that is no longer constant. Thirdly, the two-dimensional analysis here is purely two-dimensional, corresponding to a two-dimensional manifold in a three-dimensional space. That is, the two-dimensional formulation is neither plane stress nor plane strain that are rather degenerate three-dimensional cases. This contribution introduces the notion of nonlinear Poisson’s ratio in peridynamics for the first time and proves that the nonlinear Poisson’s ratio at the reference configuration coincides with \(\tfrac{1}{4}\) for three-dimensional and \(\tfrac{1}{3}\) for two-dimensional problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Silling S (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    Article  MathSciNet  MATH  Google Scholar 

  2. Dell’Isola F, Andreaus U, Placidi L (2015) At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola. Math Mech Solids 20(8):887–928

    Article  MathSciNet  MATH  Google Scholar 

  3. Madenci E, Oterkus E (2014) Peridynamic theory and its applications, Springer

  4. Javili A, Morasata R, Oterkus E, Oterkus S (2019) Peridynamics Review. Math Mech Solids 24:3714–3739

    Article  MathSciNet  MATH  Google Scholar 

  5. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184

    Article  MathSciNet  MATH  Google Scholar 

  6. Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:73–168

    Article  Google Scholar 

  7. Javili A, McBride AT, Steinmann P (2019) Continuum-kinematics-inspired peridynamics. Mechanical problems. J Mech Phys Solids 131:125–146

    Article  MathSciNet  MATH  Google Scholar 

  8. Gerstle W, Sau N, Silling S (2005) Peridynamic modeling of plain and reinforced concrete structures, In: 18th international conference on structural mechanics in reactor technology (SMiRT 18) 54–68

  9. Trageser J, Seleson P (2020) Bond-based peridynamics: a tale of two poisson ratios. Journal of Peridynamics and Nonlocal Modeling 2:278–288

    Article  MathSciNet  Google Scholar 

  10. Beatty MF, Stalnaker DO (1986) The poisson function of finite elasticity. Journal of Applied Mechanics, Transactions ASME 53(4):807–813

    Article  MATH  Google Scholar 

  11. Mihai LA, Budday S, Holzapfel GA, Kuhl E, Goriely A (2017) A family of hyperelastic models for human brain tissue. J Mech Phys Solids 106:60–79

    Article  MathSciNet  Google Scholar 

  12. Bakiler AD, Javili A (2020) Bifurcation behavior of compressible elastic half-space under plane deformations. Int J Non-Linear Mech 126

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support provided by the Scientific and Technological Research Council of Turkey (TÜBITAK) Career Development Program, grant number 218M700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Javili.

Ethics declarations

Conflicts of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Linearization Procedure

Linearization Procedure

The purpose of this Appendix is to show how the linearization of

$$\begin{aligned} \begin{aligned} \Psi = \displaystyle \frac{1}{2} \int _{\mathcal {H}_0} \displaystyle \frac{1}{2} \, C \, |\varvec{\Xi } {}^{^{|}} | \, \big [\, {|\boldsymbol {F}\cdot \hat{\varvec{\Xi }} {}^{^{|}} |} - 1 \,\big ]^2 \, \text{ d }A {}^{^{|}} \qquad \text {with} \qquad \boldsymbol{F}=\mathrm {Diag}(\lambda ,\eta ) \,, \end{aligned} \end{aligned}$$
(27)

furnishes

$$\begin{aligned} \begin{aligned} \Psi &= \displaystyle \frac{1}{2} \int _{\mathcal {H}_0} \displaystyle \frac{1}{2} \, C \, |\varvec{\Xi } {}^{^{|}} | \, \big [\, \boldsymbol {F} : [\hat{\varvec{\Xi }} {}^{^{|}} \otimes \hat{\varvec{\Xi }} {}^{^{|}} ] - 1 \,\big ]^2 \, \text{ d }A {}^{^{|}} \qquad \text {with} \qquad \\ \boldsymbol {F} &=\mathrm {Diag}(\lambda ,\eta ) \qquad \text {and} \qquad \{ \lambda , \eta \} \approx 1 \,. \end{aligned} \end{aligned}$$
(28)

In doing so, we begin with the fact that

$$\begin{aligned} \begin{aligned} |\boldsymbol {F}\cdot \hat{\varvec{\Xi }} {}^{^{|}} | = \displaystyle \frac{\xi {}^{^{|}} }{\Xi {}^{^{|}} } \,, \end{aligned} \end{aligned}$$
(29)

for which, the linearization yields

$$\begin{aligned} \begin{aligned} \text{ Lin }\, \displaystyle \frac{\xi {}^{^{|}} }{\Xi {}^{^{|}} } = \displaystyle \frac{\xi {}^{^{|}} }{\Xi {}^{^{|}} }\Bigg |_{\boldsymbol {F}=\mathbb {I}} + \displaystyle \frac{\partial }{\partial \boldsymbol {F}}\left( {\displaystyle \frac{\xi {}^{^{|}} }{\Xi {}^{^{|}} }}\right) \Bigg |_{\boldsymbol {F}=\boldsymbol {I}} : \big {[}\boldsymbol {F}-\boldsymbol {I}\big {]}\,. \end{aligned} \end{aligned}$$
(30)

At the reference configuration, the first term reduces to unity as

$$\begin{aligned} \begin{aligned} \displaystyle \frac{\xi {}^{^{|}} }{\Xi {}^{^{|}} }\Bigg |_{\boldsymbol {F}=\boldsymbol {I}} = \displaystyle \frac{\Vert \boldsymbol {F}\cdot \varvec{\Xi {}^{^{|}} }\Vert }{\Xi {}^{^{|}} }\Bigg |_{\boldsymbol {F}=\boldsymbol {I}} = \displaystyle \frac{\Vert \boldsymbol {I}\cdot \varvec{\Xi {}^{^{|}} }\Vert }{\Xi {}^{^{|}} } = \displaystyle \frac{\Xi {}^{^{|}} }{\Xi {}^{^{|}} } = 1\,. \end{aligned} \end{aligned}$$
(31)

Next, the derivative of \({\xi {}^{^{|}} }/{\Xi {}^{^{|}} }\) with respect to \(\boldsymbol {F}\) is evaluated as

$$\begin{aligned} \begin{aligned} \displaystyle \frac{\partial }{\partial \boldsymbol {F}}\left( {\displaystyle \frac{\xi {}^{^{|}} }{\Xi {}^{^{|}} }}\right)&= \displaystyle \frac{1}{\Xi {}^{^{|}} }\displaystyle \frac{\partial \xi {}^{^{|}} }{\partial \boldsymbol {F}} = \displaystyle \frac{1}{\Xi {}^{^{|}} }\displaystyle \frac{\partial \xi {}^{^{|}} }{\partial \varvec{\xi {}^{^{|}} }} \cdot \displaystyle \frac{\partial \varvec{\xi {}^{^{|}} }}{\partial \boldsymbol {F}} \qquad \text {with} \qquad \displaystyle \frac{\partial \varvec{\xi {}^{^{|}} }}{\partial \boldsymbol {F}} = \boldsymbol {i}\otimes \varvec{\Xi {}^{^{|}} } \,, \end{aligned} \end{aligned}$$
(32)

where \(\boldsymbol {i}\) is the identity tensor. Thus,

$$\begin{aligned} \begin{aligned} \displaystyle \frac{\partial }{\partial \boldsymbol {F}}\left( {\displaystyle \frac{\xi {}^{^{|}} }{\Xi {}^{^{|}} }}\right)&= \displaystyle \frac{1}{\Xi {}^{^{|}} }\displaystyle \frac{\partial \xi {}^{^{|}} }{\partial \varvec{\xi {}^{^{|}} }} \cdot \big {[}\boldsymbol {i}\otimes \varvec{\Xi {}^{^{|}} }\big {]} = \displaystyle \frac{1}{\Xi {}^{^{|}} }\displaystyle \frac{\varvec{\xi {}^{^{|}} }}{\xi {}^{^{|}} } \cdot \big {[}\boldsymbol {i}\otimes \varvec{\Xi {}^{^{|}} }\big {]}\,. \end{aligned} \end{aligned}$$
(33)

This expression, evaluated at \(\boldsymbol {F} = \boldsymbol {I}\) returns

$$\begin{aligned} \begin{aligned} \displaystyle \frac{\partial }{\partial \boldsymbol {F}}\left( {\displaystyle \frac{\xi {}^{^{|}} }{\Xi {}^{^{|}} }}\right) \Bigg |_{\boldsymbol {F}=\boldsymbol {I}}&= \displaystyle \frac{1}{\Xi {}^{^{|}} }\displaystyle \frac{\partial \Xi {}^{^{|}} }{\partial \varvec{\Xi {}^{^{|}} }}\cdot \big {[}\boldsymbol {I}\otimes \varvec{\Xi {}^{^{|}} }\big {]} = \displaystyle \frac{1}{{\Xi {}^{^{|}} }^2}\varvec{\Xi } {}^{^{|}} \otimes \varvec{\Xi } {}^{^{|}} = \displaystyle \frac{\varvec{\Xi } {}^{^{|}} }{{\Xi {}^{^{|}} }}\otimes \displaystyle \frac{\varvec{\Xi } {}^{^{|}} }{{\Xi {}^{^{|}} }} = \hat{\varvec{\Xi }} {}^{^{|}} \otimes \hat{\varvec{\Xi }} {}^{^{|}} \,. \end{aligned} \end{aligned}$$
(34)

Finally, plugging this and Eq. (31) in the initial expression (30) yields

$$\begin{aligned} \begin{aligned} \text{ Lin }\, \displaystyle \frac{\xi {}^{^{|}} }{\Xi {}^{^{|}} } = 1 + \big {[}\hat{\varvec{\Xi }} {}^{^{|}} \otimes \hat{\varvec{\Xi }} {}^{^{|}} \big {]} : \big {[}\boldsymbol {F} - \boldsymbol {I} \big {]} = 1 + \big {[}\hat{\varvec{\Xi }} {}^{^{|}} \otimes \hat{\varvec{\Xi }} {}^{^{|}} \big {]} : \boldsymbol {F} - \hat{\varvec{\Xi }} {}^{^{|}} \cdot \hat{\varvec{\Xi }} {}^{^{|}} \qquad \text {with} \qquad \hat{\varvec{\Xi }} {}^{^{|}} \cdot \hat{\varvec{\Xi }} {}^{^{|}} = 1 \,, \end{aligned} \end{aligned}$$
(35)

or simply

$$\begin{aligned} \begin{aligned} \text{ Lin }\, \displaystyle \frac{\xi {}^{^{|}} }{\Xi {}^{^{|}} } = \big {[}\hat{\varvec{\Xi }} {}^{^{|}} \otimes \hat{\varvec{\Xi }} {}^{^{|}} \big {]} : \boldsymbol {F} \,. \end{aligned} \end{aligned}$$
(36)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekiz, E., Javili, A. The Variational Explanation of Poisson’s Ratio in Bond-Based Peridynamics and Extension to Nonlinear Poisson’s Ratio. J Peridyn Nonlocal Model 5, 121–132 (2023). https://doi.org/10.1007/s42102-021-00068-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42102-021-00068-9

Keywords

Navigation