Skip to main content
Log in

High-dimensional disjoint factor analysis with its EM algorithm version

  • Original Paper
  • Published:
Japanese Journal of Statistics and Data Science Aims and scope Submit manuscript

Abstract

Vichi (Advances in Data Analysis and Classification, 11:563–591, 2017) proposed disjoint factor analysis (DFA), which is a factor analysis procedure subject to the constraint that variables are mutually disjoint. That is, in the DFA solution, each variable loads only a single factor among multiple ones. It implies that the variables are clustered into exclusive groups. Such variable clustering is considered useful for high-dimensional data with variables much more than observations. However, the feasibility of DFA for high-dimensional data has not been considered in Vichi (2017). Thus, one purpose of this paper is to show the feasibility and usefulness of DFA for high-dimensional data. Another purpose is to propose a new computational procedure for DFA, in which an EM algorithm is used. This procedure is called EM-DFA in particular, which can serve the same original purpose as in Vichi (2017) but more efficiently. Numerical studies demonstrate that both DFA and EM-DFA can cluster variables fairly well, with EM-DFA more computationally efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adachi, K. (2013). Factor analysis with EM algorithm never gives improper solutions when sample covariance and initial parameter matrices are proper. Psychometrika, 78, 380–394.

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • Adachi, K. (2016). Three-way principal component analysis with its applications to psychology. In T. Sakata (Ed.), Applied matrix and tensor variate data analysis. (pp. 1–21). Springer.

    Google ScholarΒ 

  • Adachi, K. (2019). Factor analysis: Latent variable, matrix decomposition, and constrained uniqueness formulations. WIREs Computational Statistics, https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1458. Accessed 19 Mar 2019

  • Adachi, K., & Trendafilov, N. T. (2016). Sparse principal component analysis subject to prespecified cardinality of loadings. Computational Statistics, 31, 1403–1427.

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • Adachi, K., & Trendafilov, N. T. (2018a). Sparsest factor analysis for clustering variables: A matrix decomposition approach. Advances in Data Analysis and Classification, 12, 559–585.

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • Adachi, K., & Trendafilov, N. T. (2018b). Some mathematical properties of the matrix decomposition solution in factor analysis. Psychometrika, 83, 407–424.

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317–332.

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • Bartholomew, D., Knott, M., & Moustaki, I. (2011). Latent variable models and factor analysis: A unified approach (Third Edition). . Wiley.

    BookΒ  Google ScholarΒ 

  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B, 39, 1–38.

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  • Gan, G., Ma, C., & Wu, J. (2007). Data clustering: Theory, algorithms, and applications. . Society of Industrial and Applied Mathematics (SIAM).

    BookΒ  Google ScholarΒ 

  • Guttman, L. (1954). Some necessary conditions for common-factor analysis. Psychometrika, 19, 149–160.

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • Hirose, K., & Yamamoto, M. (2015). Sparse estimation via nonconcave penalized likelihood in factor analysis model. Statistics and Computing, 25, 863–875.

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • JΓΆreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika, 32, 443–482.

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurements, 20, 141–151.

    ArticleΒ  Google ScholarΒ 

  • Koch, I. (2014). Analysis of multivariate and high-dimensional data. . Cambridge University Press.

    MATHΒ  Google ScholarΒ 

  • Konishi, S., & Kitagawa, G. (2007). Information criteria and statistical modeling. . Springer.

    MATHΒ  Google ScholarΒ 

  • Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The measurement of meaning. . University of Illinois Press.

    Google ScholarΒ 

  • Rubin, D. B., & Thayer, D. T. (1982). EM algorithms for ML factor analysis. Psychometrika, 47, 69–76.

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • Seber, G. A. F. (2008). A matrix handbook for statisticians. . Wiley.

    MATHΒ  Google ScholarΒ 

  • Stegeman, A. (2016). A new method for simultaneous estimation of the factor model parameters, factor scores, and unique parts. Computational Statistics & Data Analysis, 99, 189–203.

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • Vichi, M. (2017). Disjoint factor analysis with cross-loadings. Advances in Data Analysis and Classification, 11, 563–591.

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • Vichi, M., & Saporta, G. (2009). Clustering and disjoint principal component analysis with cross-loadings. Computational Statistics & Data Analysis, 53, 3194–3208.

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  • Yanai, H., & Ichikawa, M. (2007). Factor analysis. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics, vol. 26: Psychometrics. (pp. 257–296). Elsevier.

    Google ScholarΒ 

  • Yeung, K. Y., & Ruzzo, W. L. (2001). Principal component analysis for clustering gene expression data. Bioinformatics, 17, 763–774.

    ArticleΒ  Google ScholarΒ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyu Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, we consider minimizing loss function (7) over bk with the other parameter kept fixed. For the sake of simplicity, let us omit the subscript k from the symbols in (7). Then, it is simplified as f(b) = log|bb′ + \({{\varvec{\Psi}}}\)|+ trS(bb′ + \({{\varvec{\Psi}}}\))βˆ’1. Using W = \({{\varvec{\Psi}}}\)βˆ’1/2S\({{\varvec{\Psi}}}\)βˆ’1/2 and

$$\phi \left( {\mathbf{b}} \right) = { 1} + {\mathbf{b^{\prime}}}{{\varvec{\Psi}}}^{{ - {1}}} {\mathbf{b}},$$
(20)

the loss function can be rewritten as

$$\begin{aligned} f\left( {\mathbf{b}} \right) & \, = \log |{{\varvec{\Psi}}}| + \log \phi \left( {\mathbf{b}} \right) + {\text{tr}}{\mathbf{S}}{{\varvec{\Psi}}}^{ - 1} - \frac{1}{\phi \left( {\mathbf{b}} \right)}{\mathbf{b^{\prime}}}{{\varvec{\Psi}}}^{ - 1} {\mathbf{S}}{{\varvec{\Psi}}}^{ - 1} {\mathbf{b}} \\ & = {\text{log}}|{\mathbf{S}}| - {\text{log}}|{\mathbf{W}}| + {\text{ log}}\phi \left( {\mathbf{b}} \right) + {\text{tr}}{\mathbf{W}} \\ &- \frac{1}{\phi \left( {\mathbf{b}} \right)}{\mathbf{b^{\prime}}}{{\varvec{\Psi}}}^{{ - {1}/{2}}} {\mathbf{W}}{{\varvec{\Psi}}}^{{ - {1}/{2}}} {\mathbf{b}}, \\ \end{aligned}$$
(21)

where we have used |bb′ + Ψ|= ϕ(b)|Ξ¨| (Seber, 2008, p. 312), (bb′ + Ψ)βˆ’1 =β€‰Ξ¨βˆ’1β€‰βˆ’β€‰Ο•(b)βˆ’1Ξ¨βˆ’1bbβ€²Ξ¨βˆ’1 (Seber, 2008, p. 309), and |Ξ¨| =|S|/|W|.

Using Σ = bb′ + Ψ, (21) is also expressed as f(b) = log|Ξ£|+ trSΞ£βˆ’1. This minimizer must satisfy βˆ‚f(b)/βˆ‚b = (Ξ£βˆ’1β€‰βˆ’β€‰Ξ£βˆ’1SΞ£βˆ’1)b = 0m, or equivalently,

$${\mathbf{b}} = {\mathbf{S \Sigma}}^{{ - {1}}} {\mathbf{b}}.$$
(22)

Multiplying both sides by bβ€²\({{\varvec{\Psi}}}\)βˆ’1b leads to

$$({\mathbf{b^{\prime}}}{{\varvec{\Psi}}}^{{ - {1}}} {\mathbf{b}}){\mathbf{b}} = {\mathbf{S \Sigma}}^{{ - {1}}} {\mathbf{bb^{\prime}}}{{\varvec{\Psi}}}^{{ - {1}}} {\mathbf{b}} = {\mathbf{S \Sigma}}^{{ - {1}}} ({\mathbf{\Sigma}} -{{\varvec{\Psi}}}){{\varvec{\Psi}}}^{{ - {1}}} {\mathbf{b}} = {\mathbf{S}}{{\varvec{\Psi}}}^{{ - {1}}} {\mathbf{b}} - {\mathbf{S \Sigma}}^{{ - {1}}} {\mathbf{b}} = {\mathbf{S}}{{\varvec{\Psi}}}^{{ - {1}}} {\mathbf{b}} - {\mathbf{b}},$$
(23)

where bb′ =β€‰Ξ£β€‰βˆ’β€‰\({{\varvec{\Psi}}}\) and (22) have been used. We can use (20) to rewrite (23) as S\({{\varvec{\Psi}}}\)βˆ’1b = ϕ(b)b and premultiply both sides by \({{\varvec{\Psi}}}\)βˆ’1/2 to have \({{\varvec{\Psi}}}\)βˆ’1/2S\({{\varvec{\Psi}}}\)βˆ’1/2\({{\varvec{\Psi}}}\)βˆ’1/2b = ϕ(b) \({{\varvec{\Psi}}}\)βˆ’1/2b, i.e.,

$${\mathbf{W}}({{\varvec{\Psi}}}^{{ - {1}/{2}}} {\mathbf{b}}) \, = \phi \left( {\mathbf{b}} \right)({{\varvec{\Psi}}}^{{ - {1}/{2}}} {\mathbf{b}}) \, .$$
(24)

This is an eigen equation showing that an eigenvalue of W is expressed as (20), when b is the optimal.

Using (20) and (24), we can rewrite the final term on the right side of (21) as Ο•(b)βˆ’1bβ€²\({{\varvec{\Psi}}}\)βˆ’1/2W\({{\varvec{\Psi}}}\)βˆ’1/2b = ϕ(b)βˆ’1bβ€²\({{\varvec{\Psi}}}\)βˆ’1/2{Ο•(b)( \({{\varvec{\Psi}}}\)βˆ’1/2b)} = bβ€²\({{\varvec{\Psi}}}\)βˆ’1b = ϕ(b)β€‰βˆ’β€‰1. Thus, (21) is rewritten as

$$\begin{aligned} f\left( {\mathbf{b}} \right) & \, ={\text{log}}|{\mathbf{S}}| - {\text{log}}|{\mathbf{W}}| + {\text{ log}}\phi \left( {\mathbf{b}} \right) + {\text{tr}}{\mathbf{W}} - \left\{ {\phi \left( {\mathbf{b}} \right) - {1}} \right\} \\ & = {\text{ log}}|{\mathbf{S}}| - {\text{log}}|{\mathbf{W}}| + {\text{ tr}}{\mathbf{W}} - \left\{ {\phi \left( {\mathbf{b}} \right) - {\text{log}}\phi \left( {\mathbf{b}} \right) - {1}} \right\}. \\ \end{aligned}$$
(25)

This shows that minimizing (21) over b amounts to maximizing g = ϕ(b)β€‰βˆ’β€‰logΟ•(b)β€‰βˆ’β€‰1. Here, dg/dΟ•(b) = 1β€‰βˆ’β€‰1/Ο•(b) shows a larger Ο•(b) leading to a greater g, and b is subject to (20) being an eigenvalue of W. Thus, the maximization is attained by selecting b so that (20) is the largest eigenvalue of W: ρmax(W) = 1 + bβ€²\({{\varvec{\Psi}}}\)βˆ’1b. This holds for b = Ψ1/2u{ρmax(W)β€‰βˆ’β€‰1}1/2, i.e., (7).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Adachi, K. High-dimensional disjoint factor analysis with its EM algorithm version. Jpn J Stat Data Sci 4, 427–448 (2021). https://doi.org/10.1007/s42081-021-00119-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42081-021-00119-x

Keywords

Navigation