Skip to main content

Advertisement

Log in

Fetal MRI imaging: a brief overview of the techniques, anatomy and anomalies

  • Review
  • Published:
Chinese Journal of Academic Radiology Aims and scope Submit manuscript

Abstract

In this article, we discuss conventional and new advanced techniques in fetal MRI, provide an overview of the normal appearance of fetal anatomy, depict a series of general fetal abnormities among different organs. Although ultrasonography (US) shows the first-line option for fetal imaging, the rapid development of ultrafast MRI sequences has facilitated the tremendous improvement in fetus imaging, which is now regarded as an excellent modality for charactering fetal structures and relevant pathology and a supplementary to US when malformations are suspected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Smith FW, Adam AH, Phillips WD. NMR imaging in pregnancy. Lancet. 1983;1(8314–5):61–2.

    Article  CAS  PubMed  Google Scholar 

  2. Sonigo PC, Rypens FF, Carteret M, Delezoide AL, Brunelle FO. MR imaging of fetal cerebral anomalies. Pediatr Radiol. 1998;28(4):212–22.

    Article  CAS  PubMed  Google Scholar 

  3. Yamashita Y, Namimoto T, Abe Y, Takahashi M, Iwamasa J, Miyazaki K, Okamura H. MR imaging of the fetus by a HASTE sequence. AJR Am J Roentgenol. 1997;168(2):513–9.

    Article  CAS  PubMed  Google Scholar 

  4. Hill BJ, Joe BN, Qayyum A, Yeh BM, Goldstein R, Coakley FV. Supplemental value of MRI in fetal abdominal disease detected on prenatal sonography: preliminary experience. AJR Am J Roentgenol. 2005;184(3):993–8.

    Article  PubMed  Google Scholar 

  5. Jarvis DA, Griffiths PD. Current state of MRI of the fetal brain in utero. J Magn Reson Imaging. 2019;49(3):632–46.

    Article  PubMed  Google Scholar 

  6. Valevičienė N, Varytė G, Zakarevičienė J, Kontrimavičiūtė E, Ramašauskaitė D, Rutkauskaitė-Valančienė D: Use of Magnetic Resonance Imaging in Evaluating Fetal Brain and Abdomen Malformations during Pregnancy. Medicina. 2019, 55(2).

  7. Victoria T, Johnson AM, Edgar JC, Zarnow DM, Vossough A, Jaramillo D: Comparison Between 1.5-T and 3-T MRI for Fetal imaging: Is there an advantage to imaging with a higher field strength? AJR Am J Roentgenol 2016, 206(1):195–201.

  8. Kline-Fath BM, Calvo-Garcia MA, O’Hara SM, Racadio JM. Water imaging (hydrography) in the fetus: the value of a heavily T2-weighted sequence. Pediatr Radiol. 2007;37(2):133–40.

    Article  PubMed  Google Scholar 

  9. Listerud J, Einstein S, Outwater E, Kressel HY. First principles of fast spin echo. Magn Reson Q. 1992;8(4):199–244.

    CAS  PubMed  Google Scholar 

  10. Chung HW, Chen CY, Zimmerman RA, Lee KW, Lee CC, Chin SC. T2-Weighted fast MR imaging with true FISP versus HASTE: comparative efficacy in the evaluation of normal fetal brain maturation. AJR Am J Roentgenol. 2000;175(5):1375–80.

    Article  CAS  PubMed  Google Scholar 

  11. Chavhan GB, Babyn PS, Jankharia BG, Cheng HL, Shroff MM. Steady-state MR imaging sequences: physics, classification, and clinical applications. Radiographics. 2008;28(4):1147–60.

    Article  PubMed  Google Scholar 

  12. Simon EM, Goldstein RB, Coakley FV, Filly RA, Broderick KC, Musci TJ, Barkovich AJ. Fast MR imaging of fetal CNS anomalies in utero. AJNR Am J Neuroradiol. 2000;21(9):1688–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Asenbaum U, Brugger PC, Woitek R, Furtner J, Prayer D. Indications and technique of fetal magnetic resonance imaging. Radiologe. 2013;53(2):109–15.

    Article  CAS  PubMed  Google Scholar 

  14. Inaoka T, Sugimori H, Sasaki Y, Takahashi K, Sengoku K, Takada N, Aburano T. VIBE MRI for evaluating the normal and abnormal gastrointestinal tract in fetuses. AJR Am J Roentgenol. 2007;189(6):W303-308.

    Article  PubMed  Google Scholar 

  15. Rofsky NM, Lee VS, Laub G, Pollack MA, Krinsky GA, Thomasson D, Ambrosino MM, Weinreb JC. Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology. 1999;212(3):876–84.

    Article  CAS  Google Scholar 

  16. Saguintaah M, Couture A, Veyrac C, Baud C, Quere MP. MRI of the fetal gastrointestinal tract. Pediatr Radiol. 2002;32(6):395–404.

    Article  PubMed  Google Scholar 

  17. Odeen H, Parker DL. Magnetic resonance thermometry and its biological applications—Physical principles and practical considerations. Prog Nucl Magn Reson Spectrosc. 2019;110:34–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prayer D, Barkovich AJ, Kirschner DA, Prayer LM, Roberts TP, Kucharczyk J, Moseley ME. Visualization of nonstructural changes in early white matter development on diffusion-weighted MR images: evidence supporting premyelination anisotropy. AJNR Am J Neuroradiol. 2001;22(8):1572–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Manganaro L, Bernardo S, La Barbera L, Noia G, Masini L, Tomei A, Fierro F, Vinci V, Sollazzo P, Silvestri E, et al. Role of foetal MRI in the evaluation of ischaemic-haemorrhagic lesions of the foetal brain. J Perinat Med. 2012;40(4):419–26.

    Article  PubMed  Google Scholar 

  20. Schneider JF, Confort-Gouny S, Le Fur Y, Viout P, Bennathan M, Chapon F, Fogliarini C, Cozzone P, Girard N. Diffusion-weighted imaging in normal fetal brain maturation. Eur Radiol. 2007;17(9):2422–9.

    Article  CAS  PubMed  Google Scholar 

  21. Guimiot F, Garel C, Fallet-Bianco C, Menez F, Khung-Savatovsky S, Oury JF, Sebag G, Delezoide AL. Contribution of diffusion-weighted imaging in the evaluation of diffuse white matter ischemic lesions in fetuses: correlations with fetopathologic findings. AJNR Am J Neuroradiol. 2008;29(1):110–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yaniv G, Katorza E, Bercovitz R, Bergman D, Greenberg G, Biegon A, Hoffmann C. Region-specific changes in brain diffusivity in fetal isolated mild ventriculomegaly. Eur Radiol. 2016;26(3):840–8.

    Article  PubMed  Google Scholar 

  23. Mignone Philpott C, Shannon P, Chitayat D, Ryan G, Raybaud CA, Blaser SI. Diffusion-weighted imaging of the cerebellum in the fetus with Chiari II malformation. AJNR Am J Neuroradiol. 2013;34(8):1656–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kotovich D, Guedalia JSB, Hoffmann C, Sze G, Eisenkraft A, Yaniv G. Apparent diffusion coefficient value changes and clinical correlation in 90 cases of cytomegalovirus-infected fetuses with unremarkable fetal MRI results. AJNR Am J Neuroradiol. 2017;38(7):1443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Prayer D, Brugger PC, Prayer L. Fetal MRI: techniques and protocols. Pediatr Radiol. 2004;34(9):685–93.

    Article  PubMed  Google Scholar 

  26. Diogo MC, Prayer D, Gruber GM, Brugger PC, Stuhr F, Weber M, Bettelheim D, Kasprian G. Echo-planar FLAIR sequence improves subplate visualization in fetal MRI of the brain. Radiology. 2019;292(1):159–69.

    Article  PubMed  Google Scholar 

  27. Haacke EM, Tang J, Neelavalli J, Cheng YC. Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging. 2010;32(3):663–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reichenbach JR, Jonetz-Mentzel L, Fitzek C, Haacke EM, Kido DK, Lee BC, Kaiser WA. High-resolution blood oxygen-level dependent MR venography (HRBV): a new technique. Neuroradiology. 2001;43(5):364–9.

    Article  CAS  PubMed  Google Scholar 

  29. Robinson AJ, Blaser S, Vladimirov A, Drossman D, Chitayat D, Ryan G. Foetal “black bone” MRI: utility in assessment of the foetal spine. Br J Radiol. 2015;88(1046):20140496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dai Y, Dong S, Zhu M, Wu D, Zhong Y. Visualizing cerebral veins in fetal brain using susceptibility-weighted MRI. Clin Radiol. 2014;69(10):e392-397.

    Article  CAS  PubMed  Google Scholar 

  31. Neelavalli J, Jella PK, Krishnamurthy U, Buch S, Haacke EM, Yeo L, Mody S, Katkuri Y, Bahado-Singh R, Hassan SS, et al. Measuring venous blood oxygenation in fetal brain using susceptibility-weighted imaging. J Magn Reson Imaging. 2014;39(4):998–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Neelavalli J, Mody S, Yeo L, Jella PK, Korzeniewski SJ, Saleem S, Katkuri Y, Bahado-Singh RO, Hassan SS, Haacke EM, et al. MR venography of the fetal brain using susceptibility weighted imaging. J Magn Reson Imaging. 2014;40(4):949–57.

    Article  PubMed  Google Scholar 

  33. Eley KA, McIntyre AG, Watt-Smith SR, Golding SJ. “Black bone” MRI: a partial flip angle technique for radiation reduction in craniofacial imaging. Br J Radiol. 2012;85(1011):272–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eley KA, Watt-Smith SR, Golding SJ. “Black bone” MRI: a potential alternative to CT when imaging the head and neck: report of eight clinical cases and review of the Oxford experience. Br J Radiol. 2012;85(1019):1457–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Federau C, Sumer S, Becce F, Maeder P, O’Brien K, Meuli R, Wintermark M. Intravoxel incoherent motion perfusion imaging in acute stroke: initial clinical experience. Neuroradiology. 2014;56(8):629–35.

    Article  CAS  PubMed  Google Scholar 

  36. Siauve N, Hayot PH, Deloison B, Chalouhi GE, Alison M, Balvay D, Bussières L, Clément O, Salomon LJ. Assessment of human placental perfusion by intravoxel incoherent motion MR imaging. J Matern Fetal Neonatal Med. 2019;32(2):293–300.

    Article  PubMed  Google Scholar 

  37. Jakab A, Tuura RL, Kottke R, Ochsenbein-Kölble N, Natalucci G, Nguyen TD, Kellenberger C, Scheer I. Microvascular perfusion of the placenta, developing fetal liver, and lungs assessed with intravoxel incoherent motion imaging. J Magn Reson Imaging. 2018;48(1):214–25.

    Article  PubMed  Google Scholar 

  38. Ercolani G, Capuani S, Antonelli A, Camilli A, Ciulla S, Petrillo R, Satta S, Grimm R, Giancotti A, Ricci P et al. IntraVoxel Incoherent Motion (IVIM) MRI of fetal lung and kidney: Can the perfusion fraction be a marker of normal pulmonary and renal maturation? Eur J Radiol. 2021, 139:109726.

  39. Jakab A, Tuura RL, Kottke R, Ochsenbein-Kolble N, Natalucci G, Nguyen TD, Kellenberger C, Scheer I. Microvascular perfusion of the placenta, developing fetal liver, and lungs assessed with intravoxel incoherent motion imaging. J Magn Reson Imaging. 2018;48(1):214–25.

    Article  PubMed  Google Scholar 

  40. Sohlberg S, Mulic-Lutvica A, Lindgren P, Ortiz-Nieto F, Wikstrom AK, Wikstrom J. Placental perfusion in normal pregnancy and early and late preeclampsia: a magnetic resonance imaging study. Placenta. 2014;35(3):202–6.

    Article  CAS  PubMed  Google Scholar 

  41. Shi H, Quan X, Liang W, Li X, Ai B, Liu H. Evaluation of placental perfusion based on intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI) and its predictive value for late-onset fetal growth restriction. Geburtshilfe Frauenheilkd. 2019;79(4):396–401.

    Article  PubMed  Google Scholar 

  42. Yuan X, Yue C, Yu M, Chen P, Du P, Shao C-H, Cheng S-C, Bian R-J, Wang S-Y, Wang W et al. Fetal brain development at 25–39 weeks gestational age: a preliminary study using intravoxel incoherent motion diffusion-weighted imaging. J Mag Resonance Imaging. 2019.

  43. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4(3):316–29.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Counsell SJ, Shen Y, Boardman JP, Larkman DJ, Kapellou O, Ward P, Allsop JM, Cowan FM, Hajnal JV, Edwards AD, et al. Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics. 2006;117(2):376–86.

    Article  PubMed  Google Scholar 

  45. Rose J, Vassar R, Cahill-Rowley K, Guzman XS, Stevenson DK, Barnea-Goraly N. Brain microstructural development at near-term age in very-low-birth-weight preterm infants: an atlas-based diffusion imaging study. Neuroimage. 2014;86:244–56.

    Article  PubMed  Google Scholar 

  46. Garcia-Lazaro HG, Becerra-Laparra I, Cortez-Conradis D, Roldan-Valadez E. Global fractional anisotropy and mean diffusivity together with segmented brain volumes assemble a predictive discriminant model for young and elderly healthy brains: a pilot study at 3T. Funct Neurol. 2016;31(1):39–46.

    PubMed  PubMed Central  Google Scholar 

  47. Lockwood Estrin G, Wu Z, Deprez M, Bertelsen A, Rutherford MA, Counsell SJ, Hajnal JV. White and grey matter development in utero assessed using motion-corrected diffusion tensor imaging and its comparison to ex utero measures. MAGMA. 2019;32(4):473–85.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hilliard NJ, Hawkes R, Patterson AJ, Graves MJ, Priest AN, Hunter S, Lees C, Set PA, Lomas DJ. Amniotic fluid volume: rapid MR-based assessment at 28–32 weeks gestation. Eur Radiol. 2016;26(10):3752–9.

    Article  CAS  PubMed  Google Scholar 

  49. Sodickson A, Mortele KJ, Barish MA, Zou KH, Thibodeau S, Tempany CM. Three-dimensional fast-recovery fast spin-echo MRCP: comparison with two-dimensional single-shot fast spin-echo techniques. Radiology. 2006;238(2):549–59.

    Article  PubMed  Google Scholar 

  50. Zhao SX, Xiao YH, Lv FR, Zhang ZW, Sheng B, Ma HL. Lateral ventricular volume measurement by 3D MR hydrography in fetal ventriculomegaly and normal lateral ventricles. J Magn Reson Imaging. 2018;48(1):266–73.

    Article  PubMed  Google Scholar 

  51. Huen I, Morris DM, Wright C, Parker GJ, Sibley CP, Johnstone ED, Naish JH. R1 and R2 * changes in the human placenta in response to maternal oxygen challenge. Magn Reson Med. 2013;70(5):1427–33.

    Article  CAS  PubMed  Google Scholar 

  52. Siauve N, Chalouhi GE, Deloison B, Alison M, Clement O, Ville Y, Salomon LJ. Functional imaging of the human placenta with magnetic resonance. Am J Obstet Gynecol. 2015;213(4 Suppl):S103-114.

    Article  PubMed  Google Scholar 

  53. You W, Andescavage NN, Kapse K, Donofrio MT, Jacobs M, Limperopoulos C. Hemodynamic responses of the placenta and brain to maternal hyperoxia in fetuses with congenital heart disease by using blood oxygen-level dependent MRI. Radiology. 2020;294(1):141–8.

    Article  PubMed  Google Scholar 

  54. Khen-Dunlop N, Chalouhi G, Lecler A, Bouchouicha A, Millischer AE, Tavitian B, Siauve N, Balvay D, Salomon LJ. Assessment of BOLD response in the fetal lung. Eur Radiol. 2021;31(5):3090–7.

    Article  CAS  PubMed  Google Scholar 

  55. Evangelou IE, du Plessis AJ, Vezina G, Noeske R, Limperopoulos C. Elucidating metabolic maturation in the healthy fetal brain using 1H-MR spectroscopy. AJNR Am J Neuroradiol. 2016;37(2):360–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kok RD, van den Berg PP, van den Bergh AJ, Nijland R, Heerschap A. Maturation of the human fetal brain as observed by 1H MR spectroscopy. Magn Reson Med. 2002;48(4):611–6.

    Article  CAS  PubMed  Google Scholar 

  57. Story L, Damodaram MS, Allsop JM, McGuinness A, Wylezinska M, Kumar S, Rutherford MA. Proton magnetic resonance spectroscopy in the fetus. Eur J Obstet Gynecol Reprod Biol. 2011;158(1):3–8.

    Article  PubMed  Google Scholar 

  58. Girard N, Gouny SC, Viola A, Le Fur Y, Viout P, Chaumoitre K, D’Ercole C, Gire C, Figarella-Branger D, Cozzone PJ. Assessment of normal fetal brain maturation in utero by proton magnetic resonance spectroscopy. Magn Reson Med. 2006;56(4):768–75.

    Article  PubMed  Google Scholar 

  59. Pradhan S, Kapse K, Jacobs M, Niforatos-Andescavage N, Quistorff JL, Lopez C, Bannantine KL, Andersen NR, Vezina G, Limperopoulos C: Non-invasive measurement of biochemical profiles in the healthy fetal brain. Neuroimage. 2020, 219:117016.

  60. Kline-Fath BM, Calvo-Garcia MA. Prenatal imaging of congenital malformations of the brain. Semin Ultrasound CT MR. 2011;32(3):167–88.

    Article  PubMed  Google Scholar 

  61. Rados M, Judas M, Kostovic I. In vitro MRI of brain development. Eur J Radiol. 2006;57(2):187–98.

    Article  PubMed  Google Scholar 

  62. Kline-Fath BM. Ultrasound and MR imaging of the normal fetal brain. Neuroimaging Clin N Am. 2019;29(3):339–56.

    Article  PubMed  Google Scholar 

  63. Levine D, Barnes PD. Cortical maturation in normal and abnormal fetuses as assessed with prenatal MR imaging. Radiology. 1999;210(3):751–8.

    Article  CAS  PubMed  Google Scholar 

  64. Duczkowska A, Bekiesinska-Figatowska M, Herman-Sucharska I, Duczkowski M, Romaniuk-Doroszewska A, Jurkiewicz E, Dubis A, Urbanik A, Furmanek M, Walecki J. Magnetic resonance imaging in the evaluation of the fetal spinal canal contents. Brain Dev. 2011;33(1):10–20.

    Article  PubMed  Google Scholar 

  65. Hedequist D, Emans J. Congenital scoliosis: a review and update. J Pediatr Orthop. 2007;27(1):106–16.

    Article  PubMed  Google Scholar 

  66. Kasprian G, Balassy C, Brugger PC, Prayer D. MRI of normal and pathological fetal lung development. Eur J Radiol. 2006;57(2):261–70.

    Article  PubMed  Google Scholar 

  67. Cannie M, Jani J, De Keyzer F, Roebben I, Breysem L, Deprest J. T2 quantifications of fetal lungs at MRI-normal ranges. Prenat Diagn. 2011;31(7):705–11.

    Article  CAS  PubMed  Google Scholar 

  68. Debus A, Hagelstein C, Kilian AK, Weiss C, Schonberg SO, Schaible T, Neff KW, Busing KA. Fetal lung volume in congenital diaphragmatic hernia: association of prenatal MR imaging findings with postnatal chronic lung disease. Radiology. 2013;266(3):887–95.

    Article  PubMed  Google Scholar 

  69. Mehollin-Ray AR, Cassady CI, Cass DL, Olutoye OO. Fetal MR imaging of congenital diaphragmatic hernia. Radiographics. 2012;32(4):1067–84.

    Article  PubMed  Google Scholar 

  70. Yokoi A, Ohfuji S, Yoshimoto S, Sugioka Y, Akasaka Y, Funakoshi T. A new approach to risk stratification using fetal MRI to predict outcomes in congenital diaphragmatic hernia: the preliminary retrospective single institutional study. Translational paediatrics. 2018;7(4):356–61.

    Article  Google Scholar 

  71. Chiappa E. The impact of prenatal diagnosis of congenital heart disease on pediatric cardiology and cardiac surgery. J Cardiovasc Med (Hagerstown). 2007;8(1):12–6.

    Article  Google Scholar 

  72. Prsa M, Sun L, van Amerom J, Yoo SJ, Grosse-Wortmann L, Jaeggi E, Macgowan C, Seed M. Reference ranges of blood flow in the major vessels of the normal human fetal circulation at term by phase-contrast magnetic resonance imaging. Circ Cardiovasc Imaging. 2014;7(4):663–70.

    Article  PubMed  Google Scholar 

  73. Seed M, van Amerom JF, Yoo SJ, Al Nafisi B, Grosse-Wortmann L, Jaeggi E, Jansz MS, Macgowan CK. Feasibility of quantification of the distribution of blood flow in the normal human fetal circulation using CMR: a cross-sectional study. J Cardiovasc Magn Reson. 2012;14:79.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sandrasegaran K, Lall CG, Aisen AA. Fetal magnetic resonance imaging. Curr Opin Obstet Gynecol. 2006;18(6):605–12.

    Article  PubMed  Google Scholar 

  75. Veyrac C, Couture A, Saguintaah M, Baud C. MRI of fetal GI tract abnormalities. Abdom Imaging. 2004;29(4):411–20.

    Article  CAS  PubMed  Google Scholar 

  76. Furey EA, Bailey AA, Twickler DM. Fetal MR Imaging of Gastrointestinal Abnormalities. Radiographics. 2016;36(3):904–17.

    Article  PubMed  Google Scholar 

  77. Li X, Zhao Z, Li X, Zhao M, Kefei H Appearance of fetal intestinal obstruction on fetal MRI. Prenat Diagn. 2020.

  78. Rosenblum ND. Developmental biology of the human kidney. Semin Fetal Neonatal Med. 2008;13(3):125–32.

    Article  PubMed  Google Scholar 

  79. Kajbafzadeh AM, Nabavizadeh B, Seyed Hossein Beigi R, Alinia P, Mirshahvalad SA (2020) Virtual three-dimensional magnetic resonance fetal cystoscopy: a novel modality for precise in utero evaluation of urinary tract. Urol J. 17(1):102–104

  80. Jensen KK, Oh KY, Patel N, Narasimhan ER, Ku AS, Sohaey R. Fetal hepatomegaly: causes and associations. Radiographics. 2020;40(2):589–604.

    Article  PubMed  Google Scholar 

  81. Zhang D, Wang J: [Prenatal diagnosis and management of fetal hepatic hemangioma]. Zhejiang da xue xue bao Yi xue ban = Journal of Zhejiang University Medical sciences. 2019, 48(4):439–445.

  82. Reddy UM, Abuhamad AZ, Levine D, Saade GR, Fetal Imaging Workshop Invited P: Fetal imaging: executive summary of a joint eunice kennedy shriver national institute of child health and human development, society for maternal-fetal medicine, american institute of ultrasound in medicine, American College of Obstetricians and Gynecologists, American College of Radiology, Society for Pediatric Radiology, and Society of Radiologists in Ultrasound Fetal Imaging Workshop. Am J Obstet Gynecol. 2014, 210(5):387-397

  83. Prayer D, Malinger G, Brugger PC, Cassady C, De Catte L, De Keersmaecker B, Fernandes GL, Glanc P, Goncalves LF, Gruber GM, et al. ISUOG practice guidelines: performance of fetal magnetic resonance imaging. Ultrasound Obstet Gynecol. 2017;49(5):671–80.

    Article  CAS  PubMed  Google Scholar 

  84. Bulas D, Egloff A. Benefits and risks of MRI in pregnancy. Semin Perinatol. 2013;37(5):301–4.

    Article  PubMed  Google Scholar 

  85. Griffiths PD, Bradburn M, Campbell MJ, Cooper CL, Graham R, Jarvis D, Kilby MD, Mason G, Mooney C, Robson SC, et al. Use of MRI in the diagnosis of fetal brain abnormalities in utero (MERIDIAN): a multicentre, prospective cohort study. Lancet. 2017;389(10068):538–46.

    Article  PubMed  Google Scholar 

  86. Plunk MR, Chapman T. The fundamentals of fetal MR imaging: Part 1. Curr Probl Diagn Radiol. 2014;43(6):331–46.

    Article  PubMed  Google Scholar 

  87. Hand JW, Li Y, Thomas EL, Rutherford MA, Hajnal JV. Prediction of specific absorption rate in mother and fetus associated with MRI examinations during pregnancy. Magn Reson Med. 2006;55(4):883–93.

    Article  CAS  PubMed  Google Scholar 

  88. Ray JG, Vermeulen MJ, Bharatha A, Montanera WJ, Park AL. Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA. 2016;316(9):952–61.

    Article  PubMed  Google Scholar 

  89. Strizek B, Jani JC, Mucyo E, De Keyzer F, Pauwels I, Ziane S, Mansbach AL, Deltenre P, Cos T, Cannie MM: Safety of MR Imaging at 1.5 T in Fetuses: A Retrospective Case-Control Study of Birth Weights and the Effects of Acoustic Noise. Radiology. 2015, 275(2):530–537.

  90. Barrera CA, Francavilla ML, Serai SD, Edgar JC, Jaimes C, Gee MS, Roberts TPL, Otero HJ, Adzick NS, Victoria T: Specific Absorption Rate and Specific Energy Dose: Comparison of 1.5-T versus 3.0-T Fetal MRI. Radiology. 2020, 295(3):664–674.

  91. Weisstanner C, Gruber GM, Brugger PC, Mitter C, Diogo MC, Kasprian G, Prayer D. Fetal MRI at 3T-ready for routine use? Br J Radiol. 2017;90(1069):20160362.

    Article  PubMed  Google Scholar 

  92. Victoria T, Jaramillo D, Roberts TP, Zarnow D, Johnson AM, Delgado J, Rubesova E, Vossough A: Fetal magnetic resonance imaging: jumping from 1.5 to 3 tesla (preliminary experience). Pediatr Radiol 2014, 44(4):376–386; quiz 373–375.

  93. Morrison JC, Boyd M, Friedman BI, Bucovaz ET, Whybrew WD, Koury DN, Wiser WL, Fish SA. The effects of Renografin-60 on the fetal thyroid. Obstet Gynecol. 1973;42(1):99–103.

    CAS  PubMed  Google Scholar 

  94. American College of Radiology %J Reston VACoR: Manual on contrast media, version 10.3. 2018.

  95. Webb JA, Thomsen HS, Morcos SK. Members of contrast media safety committee of European society of urogenital r: the use of iodinated and gadolinium contrast media during pregnancy and lactation. Eur Radiol. 2005;15(6):1234–40.

    Article  PubMed  Google Scholar 

Download references

Funding

We declare that we have not received any financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangbin Wang.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interests for this publication. We declare that all the pictures involved in this article are from our unit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Wei, X., Chen, X. et al. Fetal MRI imaging: a brief overview of the techniques, anatomy and anomalies. Chin J Acad Radiol 4, 205–219 (2021). https://doi.org/10.1007/s42058-021-00082-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42058-021-00082-2

Keywords

Navigation