Skip to main content

Advertisement

Log in

Recent advances in magnetic resonance imaging of optic neuritis

  • Review
  • Published:
Chinese Journal of Academic Radiology Aims and scope Submit manuscript

Abstract

Optic neuritis is a common cause of vision loss, but it is difficult to visualize the lesion well via conventional magnetic resonance imaging due to its small size and oblique orientations of the optic nerves. Some advanced techniques have been introduced into clinical practice in recent decades. Herein we review recent advances in magnetic resonance imaging techniques that are useful in cases of optic neuritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hickman SJ, Dalton CM, Miller DH, Plant GT. Management of acute optic neuritis. Lancet. 2002;360(9349):1953–62.

    PubMed  CAS  Google Scholar 

  2. Dutra BG, da Rocha AJ, Nunes RH, Júnior MA. Neuromyelitis optica spectrum disorders: spectrum of MR imaging findings and their differential diagnosis. Radiographics. 2018;38(1):169–93.

    PubMed  Google Scholar 

  3. Halliday AM, McDonald WI, Mushin J. Delayed visual evoked response in optic neuritis. Lancet. 1972;1(7758):982–5.

    PubMed  CAS  Google Scholar 

  4. Hickman SJ, Miszkiel KA, Plant GT, Miller DH. The optic nerve sheath on MRI in acute optic neuritis. Neuroradiology. 2005;47(1):51–5.

    PubMed  CAS  Google Scholar 

  5. Becker M, Masterson K, Delavelle J, Viallon M, Vargas MI, Becker CD. Imaging of the optic nerve. Eur J Radiol. 2010;74(2):299–313.

    PubMed  Google Scholar 

  6. Onodera M, Yama N, Hashimoto M, et al. The signal intensity ratio of the optic nerve to ipsilateral frontal white matter is of value in the diagnosis of acute optic neuritis. Eur Radiol. 2016;26(8):2640–5.

    PubMed  Google Scholar 

  7. Faizy TD, Broocks G, Frischmuth I, et al. Spectrally fat-suppressed coronal 2D TSE sequences may be more sensitive than 2D STIR for the detection of hyperintense optic nerve lesions. Eur Radiol. 2019;29(11):6266–74.

    PubMed  Google Scholar 

  8. Kupersmith MJ, Alban T, Zeiffer B, Lefton D. Contrast-enhanced MRI in acute optic neuritis: relationship to visual performance. Brain. 2002;125(Pt 4):812–22.

    PubMed  Google Scholar 

  9. Zivadinov R. Can imaging techniques measure neuroprotection and remyelination in multiple sclerosis. Neurology. 2007;68(22 Suppl 3):S72–82 (discussion S91–6).

    PubMed  Google Scholar 

  10. Patel MR, Klufas RA, Alberico RA, Edelman RR. Half-fourier acquisition single-shot turbo spin-echo (HASTE) MR: comparison with fast spin-echo MR in diseases of the brain. AJNR Am J Neuroradiol. 1997;18(9):1635–40.

    PubMed  CAS  Google Scholar 

  11. Lagrèze WA, Gaggl M, Weigel M, et al. Retrobulbar optic nerve diameter measured by high-speed magnetic resonance imaging as a biomarker for axonal loss in glaucomatous optic atrophy. Invest Ophthalmol Vis Sci. 2009;50(9):4223–8.

    PubMed  Google Scholar 

  12. Hoch MJ, Bruno MT, Shepherd TM. Advanced MRI of the optic nerve. J Neuroophthalmol. 2017;37(2):187–96.

    PubMed  Google Scholar 

  13. Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med. 2012;67(5):1210–24.

    PubMed  Google Scholar 

  14. Hoch MJ, Chung S, Ben-Eliezer N, Bruno MT, Fatterpekar GM, Shepherd TM. New clinically feasible 3T MRI protocol to discriminate internal brain stem anatomy. AJNR Am J Neuroradiol. 2016;37(6):1058–65.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Held P, Nitz W, Seitz J, et al. Comparison of 2D and 3D MRI of the optic and oculomotor nerve anatomy. Clin Imaging. 2000;24(6):337–43.

    PubMed  CAS  Google Scholar 

  16. Redpath TW, Smith FW. Technical note: use of a double inversion recovery pulse sequence to image selectively grey or white brain matter. Br J Radiol. 1994;67(804):1258–63.

    PubMed  CAS  Google Scholar 

  17. Hodel J, Outteryck O, Bocher AL, et al. Comparison of 3D double inversion recovery and 2D STIR FLAIR MR sequences for the imaging of optic neuritis: pilot study. Eur Radiol. 2014;24(12):3069–75.

    PubMed  Google Scholar 

  18. Riederer I, Mühlau M, Hoshi MM, Zimmer C, Kleine JF. Detecting optic nerve lesions in clinically isolated syndrome and multiple sclerosis: double-inversion recovery magnetic resonance imaging in comparison with visually evoked potentials. J Neurol. 2019;266(1):148–56.

    PubMed  Google Scholar 

  19. Geraldes R, Ciccarelli O, Barkhof F, et al. The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nat Rev Neurol. 2018;14(4):199–213.

    PubMed  Google Scholar 

  20. Ben-Eliezer N, Sodickson DK, Shepherd T, Wiggins GC, Block KT. Accelerated and motion-robust in vivo T2 mapping from radially undersampled data using bloch-simulation-based iterative reconstruction. Magn Reson Med. 2016;75(3):1346–54.

    PubMed  CAS  Google Scholar 

  21. Bender B, Heine C, Danz S, et al. Diffusion restriction of the optic nerve in patients with acute visual deficit. J Magn Reson Imaging. 2014;40(2):334–40.

    PubMed  Google Scholar 

  22. Vicente M, Serrano AR, Falgàs N, et al. Diffusion restriction in the optic nerve and retina in patients with carotid occlusion. Neurologist. 2017;22(3):77–9.

    PubMed  Google Scholar 

  23. Fatima Z, Motosugi U, Muhi A, Hori M, Ishigame K, Araki T. Diffusion-weighted imaging in optic neuritis. Can Assoc Radiol J. 2013;64(1):51–5.

    PubMed  Google Scholar 

  24. Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR Am J Neuroradiol. 2008;29(4):632–41.

    PubMed  CAS  Google Scholar 

  25. Shao Y, Cai FQ, Zhong YL, et al. Altered intrinsic regional spontaneous brain activity in patients with optic neuritis: a resting-state functional magnetic resonance imaging study. Neuropsychiatr Dis Treat. 2015;11:3065–73.

    PubMed  PubMed Central  Google Scholar 

  26. Wang MY, Qi PH, Shi DP. Diffusion tensor imaging of the optic nerve in subacute anterior ischemic optic neuropathy at 3T. AJNR Am J Neuroradiol. 2011;32(7):1188–94.

    PubMed  Google Scholar 

  27. Goodyear BG, Zayed NM, Cortese F, Trufyn J, Costello F. Skewness of fractional anisotropy detects decreased white matter integrity resulting from acute optic neuritis. Invest Ophthalmol Vis Sci. 2015;56(12):7597–603.

    PubMed  Google Scholar 

  28. Kolbe S, Chapman C, Nguyen T, et al. Optic nerve diffusion changes and atrophy jointly predict visual dysfunction after optic neuritis. Neuroimage. 2009;45(3):679–86.

    PubMed  Google Scholar 

  29. Tang Z, Liu Z, Li R, et al. Identifying the white matter impairments among ART-naïve HIV patients: a multivariate pattern analysis of DTI data. Eur Radiol. 2017;27(10):4153–62.

    PubMed  Google Scholar 

  30. Tian Y, Liu Z, Tang Z, et al. Radiomics analysis of DTI data to assess vision outcome after intravenous methylprednisolone therapy in neuromyelitis optic neuritis. J Magn Reson Imaging. 2019;49(5):1365–73.

    PubMed  Google Scholar 

  31. Trip SA, Schlottmann PG, Jones SJ, et al. Optic nerve magnetization transfer imaging and measures of axonal loss and demyelination in optic neuritis. Mult Scler. 2007;13(7):875–9.

    PubMed  CAS  Google Scholar 

  32. Rocca MA, Agosta F, Mezzapesa DM, et al. Magnetization transfer and diffusion tensor MRI show gray matter damage in neuromyelitis optica. Neurology. 2004;62(3):476–8.

    PubMed  CAS  Google Scholar 

  33. Argyropoulou MI, Tsifetaki N, Zikou AK, et al. Systemic sclerosis: brain abnormalities revealed by conventional magnetic resonance imaging and magnetization transfer imaging. Arthritis Rheum. 2006;54(4):1350–2.

    PubMed  Google Scholar 

  34. Hickman SJ, Toosy AT, Jones SJ, et al. Serial magnetization transfer imaging in acute optic neuritis. Brain. 2004;127(Pt 3):692–700.

    PubMed  CAS  Google Scholar 

  35. Huang X, Cai FQ, Hu PH, et al. Disturbed spontaneous brain-activity pattern in patients with optic neuritis using amplitude of low-frequency fluctuation: a functional magnetic resonance imaging study. Neuropsychiatr Dis Treat. 2015;11:3075–83.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Faro SH, Mohamed FB, Tracy JI, et al. Quantitative functional MR imaging of the visual cortex at 1.5 T as a function of luminance contrast in healthy volunteers and patients with multiple sclerosis. AJNR Am J Neuroradiol. 2002;23(1):59–65.

    PubMed  Google Scholar 

  37. Langkilde AR, Frederiksen JL, Rostrup E, Larsson HB. Functional MRI of the visual cortex and visual testing in patients with previous optic neuritis. Eur J Neurol. 2002;9(3):277–86.

    PubMed  CAS  Google Scholar 

  38. Jenkins TM, Toosy AT, Ciccarelli O, et al. Neuroplasticity predicts outcome of optic neuritis independent of tissue damage. Ann Neurol. 2010;67(1):99–113.

    PubMed  Google Scholar 

  39. Korsholm K, Madsen KH, Frederiksen JL, Skimminge A, Lund TE. Recovery from optic neuritis: an ROI-based analysis of LGN and visual cortical areas. Brain. 2007;130(Pt 5):1244–53.

    PubMed  Google Scholar 

  40. Hickman SJ, Wheeler-Kingshott CA, Jones SJ, et al. Optic nerve diffusion measurement from diffusion-weighted imaging in optic neuritis. AJNR Am J Neuroradiol. 2005;26(4):951–6.

    PubMed  Google Scholar 

  41. Seeger A, Schulze M, Schuettauf F, Ernemann U, Hauser TK. Advanced diffusion-weighted imaging in patients with optic neuritis deficit—value of reduced field of view DWI and readout-segmented DWI. Neuroradiol J. 2018;31(2):126–32.

    PubMed  PubMed Central  Google Scholar 

  42. Wheeler-Kingshott CA, Trip SA, Symms MR, Parker GJ, Barker GJ, Miller DH. In vivo diffusion tensor imaging of the human optic nerve: pilot study in normal controls. Magn Reson Med. 2006;56(2):446–51.

    PubMed  CAS  Google Scholar 

  43. Wan H, Sha Y, Zhang F, Hong R, Tian G, Fan H. Diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging, and two-dimensional navigator-based reacquisition in detecting acute optic neuritis. J Magn Reson Imaging. 2016;43(3):655–60.

    PubMed  Google Scholar 

  44. Naganawa S, Yamazaki M, Kawai H, Sone M, Nakashima T, Isoda H. Anatomical details of the brainstem and cranial nerves visualized by high resolution readout-segmented multi-shot echo-planar diffusion-weighted images using unidirectional MPG at 3T. Magn Reson Med Sci. 2011;10(4):269–75.

    PubMed  Google Scholar 

  45. Jeong HK, Dewey BE, Hirtle JA, et al. Improved diffusion tensor imaging of the optic nerve using multishot two-dimensional navigated acquisitions. Magn Reson Med. 2015;74(4):953–63.

    PubMed  Google Scholar 

  46. Tian Y, Wang J, Li M, et al. Comparison of field-of-view optimized and constrained undistorted single-shot diffusion-weighted imaging and conventional diffusion-weighted imaging of optic nerve and chiasma at 3T. Neuroradiology. 2018;60(9):903–12.

    PubMed  Google Scholar 

  47. Feng Z, Min X, Sah VK, et al. Comparison of field-of-view (FOV) optimized and constrained undistorted single shot (FOCUS) with conventional DWI for the evaluation of prostate cancer. Clin Imaging. 2015;39(5):851–5.

    PubMed  Google Scholar 

  48. Dong H, Li Y, Li H, Wang B, Hu B. Study of the reduced field-of-view diffusion-weighted imaging of the breast. Clin Breast Cancer. 2014;14(4):265–71.

    PubMed  Google Scholar 

  49. Andre JB, Zaharchuk G, Saritas E, et al. Clinical evaluation of reduced field-of-view diffusion-weighted imaging of the cervical and thoracic spine and spinal cord. AJNR Am J Neuroradiol. 2012;33(10):1860–6.

    PubMed  CAS  Google Scholar 

Download references

Funding

This article received funding from Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (Grant No. ZYLX201704) and National Natural Science Foundation of China (Grant Nos. 81871340, 81571649)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfang Xian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xian, J. Recent advances in magnetic resonance imaging of optic neuritis. Chin J Acad Radiol 3, 14–18 (2020). https://doi.org/10.1007/s42058-020-00026-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42058-020-00026-2

Keywords

Navigation