Skip to main content

Advertisement

Log in

Improving measurements of similarity judgments with machine-learning algorithms

  • Research Article
  • Published:
Journal of Computational Social Science Aims and scope Submit manuscript

Abstract

Intertemporal choices involve assessing options with different reward amounts available at different time delays. The similarity approach to intertemporal choice focuses on judging how similar amounts and delays are. Yet we do not fully understand the cognitive process of how these judgments are made. Here, we use machine-learning algorithms to predict similarity judgments to (1) investigate which algorithms best predict these judgments, (2) assess which predictors are most useful in predicting participants’ judgments, and (3) determine the minimum number of judgments required to accurately predict future judgments. We applied eight algorithms to similarity judgments for reward amount and time delay made by participants in two data sets. We found that neural network, random forest, and support vector machine algorithms generated the highest out-of-sample accuracy. Though neural networks and support vector machines offer little clarity in terms of a possible process for making similarity judgments, random forest algorithms generate decision trees that can mimic the cognitive computations of human judgment making. We also found that the numerical difference between amount values or delay values was the most important predictor of these judgments, replicating previous work. Finally, the best performing algorithms such as random forest can make highly accurate predictions of judgments with relatively small sample sizes (~ 15), which will help minimize the numbers of judgments required to extrapolate to new value pairs. In summary, machine-learning algorithms provide both theoretical improvements to our understanding of the cognitive computations involved in similarity judgments and intertemporal choices as well as practical improvements in designing better ways of collecting data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

All data files and supplementary materials (tables, figures) are available at https://doi.org/10.17605/osf.io/edq39.

References

  1. Read, D. (2004). Intertemporal choice. In D. Koehler & N. Harvey (Eds.), Blackwell handbook of judgment and decision making (pp. 424–443). Oxford: Blackwell.

    Chapter  Google Scholar 

  2. Doyle, J. R. (2013). Survey of time preference, delay discounting models. Judgment and Decision Making, 8(2), 116–135.

    Google Scholar 

  3. Leland, J. W. (2002). Similarity judgments and anomalies in intertemporal choice. Economic Inquiry, 40(4), 574–581. https://doi.org/10.1093/ei/40.4.574.

    Article  Google Scholar 

  4. Rubinstein, A. (2003). “Economics and psychology”? The case of hyperbolic discounting. International Economic Review, 44(4), 1207–1216. https://doi.org/10.1111/1468-2354.t01-1-00106.

    Article  Google Scholar 

  5. Stevens, J. R. (2016). Intertemporal similarity: Discounting as a last resort. Journal of Behavioral Decision Making, 29(1), 12–24. https://doi.org/10.1002/bdm.1870.

    Article  Google Scholar 

  6. Stevens, J. R., & Soh, L.-K. (2018). Predicting similarity judgments in intertemporal choice with machine learning. Psychonomic Bulletin & Review, 25(2), 627–635. https://doi.org/10.3758/s13423-017-1398-1.

    Article  Google Scholar 

  7. Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. New York: Springer.

    Book  Google Scholar 

  8. Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer.

    Book  Google Scholar 

  9. Murthy, S. K. (1998). Automatic construction of decision trees from data: A multi-disciplinary survey. Data Mining and Knowledge Discovery, 2(4), 345–389. https://doi.org/10.1023/A:1009744630224.

    Article  Google Scholar 

  10. Fürnkranz, J. (2010). Decision tree. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of machine learning (pp. 263–267). Boston: Springer. https://doi.org/10.1007/978-0-387-30164-8_204.

    Chapter  Google Scholar 

  11. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. New York: Chapman and Hall.

    Google Scholar 

  12. Ting, K. M. (2010). Confusion matrix. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of machine learning (p. 209). Boston: Springer. https://doi.org/10.1007/978-0-387-30164-8_157.

    Chapter  Google Scholar 

  13. Perlich, C., Provost, F., & Simonoff, J. S. (2003). Tree induction versus logistic regression: A learning-curve analysis. Journal of Machine Learning Research, 4, 211–255.

    Google Scholar 

  14. Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100–1122. https://doi.org/10.1177/1745691617693393.

    Article  Google Scholar 

  15. R Core Team. (2018). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/. Accessed 13 Dec 2020.

  16. Kuhn, M., & Quinlan, R. (2020). C50: C5.0 decision trees and rule-based models. https://CRAN.R-project.org/package=C50. Accessed 13 Dec 2020.

  17. Kuhn, M. (2020). caret: Classification and regression training. https://CRAN.R-project.org/package=caret. Accessed 13 Dec 2020.

  18. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2019). e1071: Misc functions of the Department of Statistics, probability theory group (formerly: E1071), TU Wien. https://CRAN.R-project.org/package=e1071. Accessed 13 Dec 2020.

  19. Microsoft, & Weston, S. (2020). foreach: Provides foreach looping construct. https://CRAN.R-project.org/package=foreach. Accessed 13 Dec 2020.

  20. Schloerke, B., Crowley, J., Cook, D., Briatte, F., Marbach, M., Thoen, E., et al. (2020). GGally: Extension to “ggplot2”. https://CRAN.R-project.org/package=GGally. Accessed 13 Dec 2020.

  21. Müller, K. (2017). here: A simpler way to find your files. https://CRAN.R-project.org/package=here. Accessed 13 Dec 2020.

  22. Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). Kernlab—An S4 package for kernel methods in R. Journal of Statistical Software, 11(9), 1–20. https://doi.org/10.18637/jss.v011.i09. Accessed 13 Dec 2020.

  23. Majka, M. (2019). naivebayes: High performance implementation of the naive Bayes algorithm in R. https://CRAN.R-project.org/package=naivebayes. Accessed 13 Dec 2020.

  24. Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). New York: Springer.

  25. Aust, F., & Barth, M. (2018). papaja: Create APA manuscripts with R Markdown. https://github.com/crsh/papaja. Accessed 13 Dec 2020.

  26. Pedersen, T. L. (2019). patchwork: The composer of plots. https://CRAN.R-project.org/package=patchwork. Accessed 13 Dec 2020.

  27. Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.

  28. Therneau, T., & Atkinson, B. (2019). rpart: Recursive partitioning and regression trees. https://CRAN.R-project.org/package=rpart. Accessed 13 Dec 2020.

  29. Silge, J., & Robinson, D. (2016). tidytext: Text mining and analysis using tidy data principles in R. Journal of Open Source Software. https://doi.org/10.21105/joss.00037.

    Article  Google Scholar 

  30. Wickham, H. (2017). tidyverse: Easily install and load the “tidyverse”. https://CRAN.R-project.org/package=tidyverse. Accessed 13 Dec 2020.

  31. Xie, Y., Allaire, J. J., & Grolemund, G. (2018). R markdown: The definitive guide. Boca Raton: Chapman & Hall/CRC. https://bookdown.org/yihui/rmarkdown. Accessed 13 Dec 2020.

  32. Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo: Morgan Kaufmann Publishers Inc.

    Google Scholar 

  33. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324.

    Article  Google Scholar 

  34. Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27. https://doi.org/10.1109/TIT.1967.1053964.

    Article  Google Scholar 

  35. Maron, M. E. (1961). Automatic indexing: An experimental inquiry. Journal of the ACM, 8(3), 404–417. https://doi.org/10.1145/321075.321084.

    Article  Google Scholar 

  36. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133. https://doi.org/10.1007/BF02478259.

    Article  Google Scholar 

  37. Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on computational learning theory (pp. 144–152). Pittsburgh: Association for Computing Machinery. https://doi.org/10.1145/130385.130401.

  38. Laine, A. (2003). Neural networks. In A. Ralston, E. D. Reilley, & D. Hemmendinger (Eds.), Encyclopedia of computer science (pp. 1233–1239). New York: Wiley.

    Google Scholar 

  39. Zhang, X. (2010). Support vector machines. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of machine learning (pp. 941–946). Boston: Springer. https://doi.org/10.1007/978-0-387-30164-8_804.

    Chapter  Google Scholar 

  40. Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 61–83. https://doi.org/10.1017/S0140525X0999152X.

    Article  Google Scholar 

  41. Kuhn, M., & Johnson, K. (2019). Feature engineering and selection: A practical approach for predictive models. Boca Raton: CRC Press.

    Book  Google Scholar 

  42. Rubinstein, A. (1988). Similarity and decision-making under risk (Is there a utility theory resolution to the Allais paradox?). Journal of Economic Theory, 46(1), 145–153. https://doi.org/10.1016/0022-0531(88)90154-8.

    Article  Google Scholar 

  43. Leland, J. W. (1994). Generalized similarity judgments: An alternative explanation for choice anomalies. Journal of Risk and Uncertainty, 9(2), 151–172.

    Article  Google Scholar 

  44. Leland, J. W. (2013). Equilibrium selection, similarity judgments, and the “nothing to gain/nothing to lose” effect. Journal of Behavioral Decision Making, 26(5), 418–428. https://doi.org/10.1002/bdm.1772.

    Article  Google Scholar 

  45. Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327–352. https://doi.org/10.1037/0033-295X.84.4.327.

    Article  Google Scholar 

  46. Shepard, R. (1987). Toward a universal law of generalization for psychological science. Science, 237(4820), 1317–1323. https://doi.org/10.1126/science.3629243.

    Article  Google Scholar 

  47. Goldstone, R. L., & Son, J. (2005). Similarity. In K. J. Holyoak & R. Morrison (Eds.), Cambridge handbook of thinking and reasoning (pp. 13–36). Cambridge: Cambridge University Press.

    Google Scholar 

  48. Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6(1), 37–66. https://doi.org/10.1007/BF00153759.

    Article  Google Scholar 

  49. Hahn, U., & Chater, N. (1998). Similarity and rules: Distinct? Exhaustive? Empirically distinguishable? Cognition, 65(2–3), 197–230. https://doi.org/10.1016/S0010-0277(97)00044-9.

    Article  Google Scholar 

  50. Mooney, R. J. (1993). Integrating theory and data in category learning. In G. V. Nakamura, D. L. Medin, & R. Taraban (Eds.), Categorization by humans and machines: Advances in research and theory (pp. 189–218). San Diego: Academic Press.

    Chapter  Google Scholar 

  51. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. Cambridge: MIT Press.

    Google Scholar 

  52. Kattan, M. W., Adams, D. A., & Parks, M. S. (1993). A comparison of machine learning with human judgment. Journal of Management Information Systems, 9(4), 37–57. https://doi.org/10.1080/07421222.1993.11517977.

    Article  Google Scholar 

  53. Rosenfeld, A., Zuckerman, I., Azaria, A., & Kraus, S. (2012). Combining psychological models with machine learning to better predict people’s decisions. Synthese, 189(1), 81–93. https://doi.org/10.1007/s11229-012-0182-z.

    Article  Google Scholar 

  54. Brighton, H., & Gigerenzer, G. (2015). The bias bias. Journal of Business Research, 68(8), 1772–1784. https://doi.org/10.1016/j.jbusres.2015.01.061.

    Article  Google Scholar 

  55. Stevens, J. R., Saltzman, A., Rasumussen, T., & Soh, L.-K. (2020). Improving measurements of similarity judgments with machine-learning algorithms. PsyArXiv. https://doi.org/10.31234/osf.io/epkyv.

Download references

Funding

This research was funded by the National Science Foundation (SES-1658837).

Author information

Authors and Affiliations

Authors

Contributions

The authors made the following contributions. JRS: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, resources, software, supervision, visualization, writing—original draft preparation, writing—review and editing; APS: formal analysis, methodology, software, visualization, writing—review and editing; TR: formal analysis, methodology, software, visualization, writing—review and editing; L-KS: conceptualization, funding acquisition, investigation, supervision, writing—review and editing.

Corresponding author

Correspondence to Jeffrey R. Stevens.

Ethics declarations

Conflict of interest

The authors declare no known conflicts of interest.

Code availability

All data analysis scripts are available at https://doi.org/10.17605/osf.io/edq39.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was funded by an award from the National Science Foundation (SES-1658837). We thank the University of Nebraska Holland Computing Center for providing computing access to analyze the data.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2274 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stevens, J.R., Polzkill Saltzman, A., Rasmussen, T. et al. Improving measurements of similarity judgments with machine-learning algorithms. J Comput Soc Sc 4, 613–629 (2021). https://doi.org/10.1007/s42001-020-00098-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42001-020-00098-1

Keywords

Navigation