Skip to main content

Advertisement

Log in

The measurement of vitamin D metabolites part II—the measurement of the various vitamin D metabolites

  • Review Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Today, the possibility exists to measure a number of different vitamin D metabolites with accurate and precise methods. The most abundant vitamin D metabolite, 25(OH)D, is considered the best marker for estimating vitamin D status and is therefore the most commonly measured in clinical practice. There is no consensus on the added value of measuring other metabolites beyond 25-hydroxyvitamin D, although, in some special clinical scenarios and complicated cases, these metabolites may provide just the information needed for an accurate diagnosis. The problem this review addresses is which metabolite to measure and when and how to measure it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

7-DHC:

Dehydrocholesterol or provitamin D3)

24,25(OH)2D3:

24,25-Dihydroxyvitamin D3

25(OH)D3:

Calcidiol or 25-hydroxyvitamin D3

1α,25(OH)2D3:

Calcitriol or 1,25-dihydroxyvitamin D3

C3-epi-25(OH)D:

C3-epimer of 25(OH)D

CYP27B1:

25(OH)D-1a-hydroxylase

CYP24A1:

24-Hydroxylase

PTH:

Parathyroid hormone

FGF-23:

Fibroblast growth factor-23

VDBP:

Vitamin D-binding protein

VDDR:

Vitamin D-dependent rickets

VDR:

Vitamin D receptor

VDSP:

Vitamin D standardization program

VMR:

Vitamin D metabolic ratio

CLD:

Chronic liver disease

CKD:

Chronic kidney disease

SHPT:

Secondary hyperparathyroidism

UV:

Ultraviolet

HPLC:

High-performance liquid chromatography

UHPLC:

Ultra-high-pressure liquid chromatography

LC-MS/MS:

Liquid chromatography coupled with mass spectrometry

ID LC-MS/MS:

Isotope dilution liquid chromatography coupled with mass spectrometry

CPBA:

Competitive protein binding assays

RIA:

Radioimmunoassay

ELISA:

Enzyme-linked immunosorbent assays

CLIA:

Chemiluminescent assays

RMP:

Reference measurement procedure

NIST:

National Institute for Standards and Technology

IFCC:

International Federation of Clinical Chemistry

JCTLM:

Joint Committee for Traceability in Laboratory Medicine

AACC:

American Association for Clinical Chemistry

DEQAS:

Vitamin D External Quality Assessment Scheme

CAP:

College of American Pathologists

CDC:

Center for Disease Control

EQA:

External quality assessment

References

  1. Bikle DD, Vitamin D (2018) Assays. Front Horm Res 50:14–30

    Article  PubMed  Google Scholar 

  2. Byrdwell WC, Devries J, Exler J, Harnly JM, Holden JM, Holick MF et al (2008) Analyzing vitamin D in foods and supplements: methodologic challenges. Am J Clin Nutr 88(2):554S–557S

    Article  CAS  PubMed  Google Scholar 

  3. Cai SS, Syage JA (2006) Comparison of atmospheric pressure photoionization, atmospheric pressure chemical ionization, and electrospray ionization mass spectrometry for analysis of lipids. Anal Chem 78(4):1191–1199

    Article  CAS  PubMed  Google Scholar 

  4. Adamec J, Jannasch A, Huang J, Hohman E, Fleet JC, Peacock M et al (2011) Development and optimization of an LC-MS/MS-based method for simultaneous quantification of vitamin D2 , vitamin D3, 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3. J Sep Sci 34(1):11–20

    Article  CAS  PubMed  Google Scholar 

  5. Herrmann M, Farrell CL, Pusceddu I, Fabregat-Cabello N, Cavalier E (2017) Assessment of vitamin D status - a changing landscape. Clin Chem Lab Med 55(1):3–26

    Article  CAS  PubMed  Google Scholar 

  6. Heureux N, Vitamin D (2017) Testing-where are we and what is on the horizon? Adv Clin Chem 78:59–101

    Article  CAS  PubMed  Google Scholar 

  7. Hoofnagle AN, Wener MH (2009) The fundamental flaws of immunoassays and potential solutions using tandem mass spectrometry. J Immunol Methods 347(1–2):3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duan X, Weinstock-Guttman B, Wang H, Bang E, Li J, Ramanathan M et al (2010) Ultrasensitive quantification of serum vitamin D metabolites using selective solid-phase extraction coupled to microflow liquid chromatography and isotope-dilution mass spectrometry. Anal Chem 82(6):2488–2497

    Article  CAS  PubMed  Google Scholar 

  9. Higashi T, Shimada K, Toyo'oka T (2010) Advances in determination of vitamin D related compounds in biological samples using liquid chromatography-mass spectrometry: a review. J Chromatogr B Anal Technol Biomed Life Sci 878(20):1654–1661

    Article  CAS  Google Scholar 

  10. El-Khoury JM, Reineks EZ, Wang S (2011) Progress of liquid chromatography-mass spectrometry in measurement of vitamin D metabolites and analogues. Clin Biochem 44(1):66–76

    Article  CAS  PubMed  Google Scholar 

  11. Valcour A, Zierold C, Podgorski AL, Olson GT, Wall JV, DeLuca HF et al (2016) A novel, fully-automated, chemiluminescent assay for the detection of 1,25-dihydroxyvitamin D in biological samples. J Steroid Biochem Mol Biol 164:120–126

    Article  CAS  PubMed  Google Scholar 

  12. Mahlow J, Bunch DR, Wang S (2016) Quantification of 1,25-dihydroxyvitamin D2 and D3 in serum using liquid chromatography-tandem mass spectrometry. Methods Mol Biol 1378:291–300

    Article  CAS  PubMed  Google Scholar 

  13. Wan D, Yang J, Barnych B, Hwang SH, Lee KS, Cui Y et al (2017) A new sensitive LC/MS/MS analysis of vitamin D metabolites using a click derivatization reagent, 2-nitrosopyridine. J Lipid Res 58(4):798–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carter GD, Berry J, Durazo-Arvizu R, Gunter E, Jones G, Jones J et al (2017) Quality assessment of vitamin D metabolite assays used by clinical and research laboratories. J Steroid Biochem Mol Biol 173:100–104

    Article  CAS  PubMed  Google Scholar 

  15. Zittermann A, Ernst JB, Becker T, Dreier J, Knabbe C, Gummert JF et al (2016) Measurement of circulating 1,25-dihydroxyvitamin D: comparison of an automated method with a liquid chromatography tandem mass spectrometry method. Int J Anal Chem 2016:8501435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Souberbielle JC, Cavalier E, Delanaye P, Massart C, Brailly-Tabard S, Cormier C et al (2015) Serum calcitriol concentrations measured with a new direct automated assay in a large population of adult healthy subjects and in various clinical situations. Clin Chim Acta 451(Pt B):149–153

    Article  CAS  PubMed  Google Scholar 

  17. Dirks NF, Martens F, Vanderschueren D, Billen J, Pauwels S, Ackermans MT et al (2016) Determination of human reference values for serum total 1,25-dihydroxyvitamin D using an extensively validated 2D ID-UPLC-MS/MS method. J Steroid Biochem Mol Biol 164:127–133

    Article  CAS  PubMed  Google Scholar 

  18. Lips P (2007) Relative value of 25(OH)D and 1,25(OH)2D measurements. J Bone Miner Res 22(11):1668–1671

    Article  CAS  PubMed  Google Scholar 

  19. Dusso AS (2011) Kidney disease and vitamin D levels: 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and VDR activation. Kidney Int Suppl (2011) 1(4):136–141

    Article  CAS  Google Scholar 

  20. Dirks NF, Ackermans MT, Lips P, de Jongh RT, Vervloet MG, de Jonge R et al (2018) The when, what & how of measuring vitamin D metabolism in clinical medicine. Nutrients 10(4):482. https://doi.org/10.3390/nu10040482

  21. Levin A, Bakris GL, Molitch M, Smulders M, Tian J, Williams LA et al (2007) Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int 71(1):31–38

    Article  CAS  PubMed  Google Scholar 

  22. Johal M, Levin A (2009) Vitamin D and parathyroid hormone in general populations: understandings in 2009 and applications to chronic kidney disease. Clin J Am Soc Nephrol 4(9):1508–1514

    Article  CAS  PubMed  Google Scholar 

  23. Zalewski A, Ma NS, Legeza B, Renthal N, Flück CE, Pandey AV (2016) Vitamin D-dependent rickets type 1 caused by mutations in CYP27B1 affecting protein interactions with adrenodoxin. J Clin Endocrinol Metab 101(9):3409–3418

    Article  CAS  PubMed  Google Scholar 

  24. Molin A, Wiedemann A, Demers N, Kaufmann M, Do Cao J, Mainard L et al (2017) Vitamin D–dependent rickets type 1B (25-hydroxylase deficiency): a rare condition or a misdiagnosed condition? J Bone Miner Res 32:1893–1899. https://doi.org/10.1002/jbmr.3181

  25. Thacher TD, Levine MA (2017) CYP2R1 mutations causing vitamin D-deficiency rickets. J Steroid Biochem Mol Biol 173:333–336

    Article  CAS  PubMed  Google Scholar 

  26. Carpenter TO (2012) The expanding family of hypophosphatemic syndromes. J Bone Miner Metab 30(1):1–9

    Article  CAS  PubMed  Google Scholar 

  27. Kinoshita Y, Fukumoto S (2018) X-linked hypophosphatemia and FGF23-related hypophosphatemic diseases: prospect for new treatment. Endocr Rev 39(3):274–291

    Article  PubMed  Google Scholar 

  28. Malloy PJ, Feldman D (2010) Genetic disorders and defects in vitamin d action. Endocrinol Metab Clin N Am 39(2):333–346 table of contents

    Article  CAS  Google Scholar 

  29. Adams JS, Hewison M (2012) Extrarenal expression of the 25-hydroxyvitamin D-1-hydroxylase. Arch Biochem Biophys 523(1):95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Donovan PJ, Sundac L, Pretorius CJ, d'Emden MC, McLeod DSA (2013) Calcitriol-mediated Hypercalcemia: causes and course in 101 patients. J Clin Endocrinol Metab 98(10):4023–4029

    Article  CAS  PubMed  Google Scholar 

  31. Makris K, Sempos C, Cavalier E (2020) The measurement of vitamin D metabolites: part I—metabolism of vitamin D and the measurement of 25-hydroxyvitamin D. Hormones. https://doi.org/10.1007/s42000-019-00169-7

  32. Jones G, Prosser DE, Kaufmann M (2014) Cytochrome P450-mediated metabolism of vitamin D. J Lipid Res 55(1):13–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Petkovich M, Jones G (2011) CYP24A1 and kidney disease. Curr Opin Nephrol Hypertens 20(4):337–344

    Article  CAS  PubMed  Google Scholar 

  34. Leeuwenkamp OR, van der Wiel HE, Lips P, van der Vijgh WJ, Barto R, Greuter H et al (1993) Human pharmacokinetics of orally administered (24 R)-hydroxycalcidiol. Eur J Clin Chem Clin Biochem 31(7):419–426

    CAS  PubMed  Google Scholar 

  35. Bosworth CR, Levin G, Robinson-Cohen C, Hoofnagle AN, Ruzinski J, Young B et al (2012) The serum 24,25-dihydroxyvitamin D concentration, a marker of vitamin D catabolism, is reduced in chronic kidney disease. Kidney Int 82(6):693–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pike JW, Meyer MB (2012) Regulation of mouse Cyp24a1 expression via promoter-proximal and downstream-distal enhancers highlights new concepts of 1,25-dihydroxyvitamin D(3) action. Arch Biochem Biophys 523(1):2–8

    Article  CAS  PubMed  Google Scholar 

  37. de Boer IH, Sachs MC, Chonchol M, Himmelfarb J, Hoofnagle AN, Ix JH et al (2014) Estimated GFR and circulating 24,25-dihydroxyvitamin D3 concentration: a participant-level analysis of 5 cohort studies and clinical trials. Am J Kidney Dis 64(2):187–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Berg AH, Powe CE, Evans MK, Wenger J, Ortiz G, Zonderman AB et al (2015) 24,25-Dihydroxyvitamin d3 and vitamin D status of community-dwelling black and white Americans. Clin Chem 61(6):877–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bosworth C, de Boer IH (2013) Impaired vitamin D metabolism in CKD. Semin Nephrol 33(2):158–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ketha H, Kumar R, Singh RJ (2016) LC-MS/MS for identifying patients with CYP24A1 mutations. Clin Chem 62(1):236–242

    Article  CAS  PubMed  Google Scholar 

  41. Carpenter TO (2017) CYP24A1 loss of function: clinical phenotype of monoallelic and biallelic mutations. J Steroid Biochem Mol Biol 173:337–340

    Article  CAS  PubMed  Google Scholar 

  42. Tebben PJ, Milliner DS, Horst RL, Harris PC, Singh RJ, Wu Y et al (2012) Hypercalcemia, hypercalciuria, and elevated calcitriol concentrations with autosomal dominant transmission due to CYP24A1 mutations: effects of ketoconazole therapy. J Clin Endocrinol Metab 97(3):E423–E4E7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schlingmann KP, Kaufmann M, Weber S, Irwin A, Goos C, John U et al (2011) Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med 365(5):410–421

    Article  CAS  PubMed  Google Scholar 

  44. Jacobs TP, Kaufman M, Jones G, Kumar R, Schlingmann K-P, Shapses S et al (2014) A lifetime of hypercalcemia and hypercalciuria, finally explained. J Clin Endocrinol Metab 99(3):708–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cashman KD, Hayes A, Galvin K, Merkel J, Jones G, Kaufmann M et al (2015) Significance of serum 24,25-dihydroxyvitamin D in the assessment of vitamin D status: a double-edged sword? Clin Chem 61(4):636–645

    Article  CAS  PubMed  Google Scholar 

  46. Wagner D, Hanwell HE, Schnabl K, Yazdanpanah M, Kimball S, Fu L et al (2011) The ratio of serum 24,25-dihydroxyvitamin D(3) to 25-hydroxyvitamin D(3) is predictive of 25-hydroxyvitamin D(3) response to vitamin D(3) supplementation. J Steroid Biochem Mol Biol 126(3–5):72–77

    Article  CAS  PubMed  Google Scholar 

  47. Kaufmann M, Gallagher JC, Peacock M, Schlingmann K-P, Konrad M, DeLuca HF et al (2014) Clinical utility of simultaneous quantitation of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D by LC-MS/MS involving derivatization with DMEQ-TAD. J Clin Endocrinol Metab 99(7):2567–2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ketha H, Thacher TD, Oberhelman SS, Fischer PR, Singh RJ, Kumar R (2018) Comparison of the effect of daily versus bolus dose maternal vitamin D(3) supplementation on the 24,25-dihydroxyvitamin D(3) to 25-hydroxyvitamin D(3) ratio. Bone. 110:321–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Molin A, Baudoin R, Kaufmann M, Souberbielle JC, Ryckewaert A, Vantyghem MC et al (2015) CYP24A1 mutations in a cohort of hypercalcemic patients: evidence for a recessive trait. J Clin Endocrinol Metab 100(10):E1343–E1E52

    Article  CAS  PubMed  Google Scholar 

  50. Selamet U, Katz R, Ginsberg C, Rifkin DE, Fried LF, Kritchevsky SB et al (2018) Serum calcitriol concentrations and kidney function decline, heart failure, and mortality in elderly community-living adults: the health, aging, and body composition study. Am J Kidney Dis 72(3):419–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tang JCY, Nicholls H, Piec I, Washbourne CJ, Dutton JJ, Jackson S et al (2017) Reference intervals for serum 24,25-dihydroxyvitamin D and the ratio with 25-hydroxyvitamin D established using a newly developed LC-MS/MS method. J Nutr Biochem 46:21–29

    Article  CAS  PubMed  Google Scholar 

  52. Fabregat-Cabello N, Farre-Segura J, Huyghebaert L, Peeters S, Le Goff C, Souberbielle J-C et al (2017) A fast and simple method for simultaneous measurements of 25(OH)D, 24,25(OH)2D and the vitamin D metabolite ratio (VMR) in serum samples by LC-MS/MS. Clin Chim Acta 473:116–123

    Article  CAS  PubMed  Google Scholar 

  53. Jones G, Kaufmann M (2016) Vitamin D metabolite profiling using liquid chromatography–tandem mass spectrometry (LC–MS/MS). J Steroid Biochem Mol Biol 164:110–114

    Article  CAS  PubMed  Google Scholar 

  54. Dirks NF, Ackermans MT, de Jonge R, Heijboer AC (2019) Reference values for 24,25-dihydroxyvitamin D and the 25-hydroxyvitamin D/24,25-dihydroxyvitamin D ratio. Clin Chem Lab Med 57(10):e259–e261. https://doi.org/10.1515/cclm-2018-1096

  55. Tai SS, Nelson MA (2015) Candidate reference measurement procedure for the determination of (24R),25-dihydroxyvitamin D3 in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Chem 87(15):7964–7970

    Article  CAS  PubMed  Google Scholar 

  56. Wise SA, Tai SS, Nelson MA, Burdette CQ, Camara JE, Hoofnagle AN et al (2017) Interlaboratory comparison for the determination of 24,25-dihydroxyvitamin D(3) in human serum using liquid chromatography with tandem mass spectrometry. J AOAC Int 100(5):1308–1317

    Article  CAS  PubMed  Google Scholar 

  57. Phinney KW, Bedner M, Tai SS, Vamathevan VV, Sander LC, Sharpless KE et al (2012) Development and certification of a standard reference material for vitamin D metabolites in human serum. Anal Chem 84(2):956–962

    Article  CAS  PubMed  Google Scholar 

  58. Bailey D, Veljkovic K, Yazdanpanah M, Adeli K (2013) Analytical measurement and clinical relevance of vitamin D(3) C3-epimer. Clin Biochem 46(3):190–196

    Article  CAS  PubMed  Google Scholar 

  59. Farrell CJ, Martin S, McWhinney B, Straub I, Williams P, Herrmann M (2012) State-of-the-art vitamin D assays: a comparison of automated immunoassays with liquid chromatography-tandem mass spectrometry methods. Clin Chem 58(3):531–542

    Article  CAS  PubMed  Google Scholar 

  60. Farrell C, Soldo J, Williams P, Herrmann M (2012) 25-Hydroxyvitamin D testing: challenging the performance of current automated immunoassays. Clin Chem Lab Med 50(11):1953–1963

    CAS  PubMed  Google Scholar 

  61. Chun RF, Peercy BE, Orwoll ES, Nielson CM, Adams JS, Hewison M (2014) Vitamin D and DBP: the free hormone hypothesis revisited. J Steroid Biochem Mol Biol 144(Pt A):132–137

    Article  CAS  PubMed  Google Scholar 

  62. Speeckaert M, Huang G, Delanghe JR, Taes YE (2006) Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Clin Chim Acta 372(1–2):33–42

    Article  CAS  PubMed  Google Scholar 

  63. Bhan I (2014) Vitamin d binding protein and bone health. Int J Endocrinol 2014:561214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Adebanjo OA, Moonga BS, Haddad JG, Huang CL, Zaidi M (1998) A possible new role for vitamin D-binding protein in osteoclast control: inhibition of extracellular Ca2+ sensing at low physiological concentrations. Biochem Biophys Res Commun 249(3):668–671

    Article  CAS  PubMed  Google Scholar 

  65. Chun RF (2012) New perspectives on the vitamin D binding protein. Cell Biochem Funct 30(6):445–456

    Article  CAS  PubMed  Google Scholar 

  66. Bikle DD, Schwartz J (2019) Vitamin D binding protein, total and free vitamin D levels in different physiological and pathophysiological conditions. Front Endocrinol 10:317

    Article  Google Scholar 

  67. Cooke NE, Haddad JG (1989) Vitamin D binding protein (Gc-globulin). Endocr Rev 10(3):294–307

    Article  CAS  PubMed  Google Scholar 

  68. Wang X, Shapses SA, Al-Hraishawi H (2017) Free and bioavailable 25-hydroxyvitamin D levels in patients with primary hyperparathyroidism. Endocr Pract 23(1):66–71

    Article  PubMed  Google Scholar 

  69. Bjorkhem-Bergman L, Torefalk E, Ekstrom L, Bergman P (2018) Vitamin D binding protein is not affected by high-dose vitamin D supplementation: a post hoc analysis of a randomised, placebo-controlled study. BMC Res Notes 11(1):619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Arnaud J, Constans J (1993) Affinity differences for vitamin D metabolites associated with the genetic isoforms of the human serum carrier protein (DBP). Hum Genet 92(2):183–188

    Article  CAS  PubMed  Google Scholar 

  71. Lauridsen AL, Vestergaard P, Nexo E (2001) Mean serum concentration of vitamin D-binding protein (Gc globulin) is related to the Gc phenotype in women. Clin Chem 47(4):753–756

    Article  CAS  PubMed  Google Scholar 

  72. Bouillon R, Van Assche FA, Van Baelen H, Heyns W, De Moor P (1981) Influence of the vitamin D-binding protein on the serum concentration of 1,25-dihydroxyvitamin D3. Significance of the free 1,25-dihydroxyvitamin D3 concentration. J Clin Invest 67(3):589–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bikle DD, Gee E, Halloran B, Haddad JG (1984) Free 1,25-dihydroxyvitamin D levels in serum from normal subjects, pregnant subjects, and subjects with liver disease. J Clin Invest 74(6):1966–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mendel CM (1989) The free hormone hypothesis: a physiologically based mathematical model. Endocr Rev 10(3):232–274

    Article  CAS  PubMed  Google Scholar 

  75. Vieth R (1994) Simple method for determining specific binding capacity of vitamin D-binding protein and its use to calculate the concentration of "free" 1,25-dihydroxyvitamin D. Clin Chem 40(3):435–441

    Article  CAS  PubMed  Google Scholar 

  76. Chun RF, Nielson CM (2017) Free Vitamin D: Concepts, assays, outcomes and prospects. In: Feldman D, Wesley Pike J, Bouillon R, Giovannucci E, Goltzman D, Hewison M (eds) Vitamin D volume 1: biochemistry, physiology and diagnosis, vol 1, 4th edn. Elsevier

  77. Schwartz JB, Lai J, Lizaola B, Kane L, Weyland P, Terrault NA et al (2014) Variability in free 25(OH) vitamin D levels in clinical populations. J Steroid Biochem Mol Biol 144(Pt A):156–158

    Article  CAS  PubMed  Google Scholar 

  78. Bhan I, Powe CE, Berg AH, Ankers E, Wenger JB, Karumanchi SA et al (2012) Bioavailable vitamin D is more tightly linked to mineral metabolism than total vitamin D in incident hemodialysis patients. Kidney Int 82(1):84–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tsuprykov O, Chen X, Hocher CF, Skoblo R, Lianghong Y, Hocher B (2018) Why should we measure free 25(OH) vitamin D? J Steroid Biochem Mol Biol 180:87–104

    Article  CAS  PubMed  Google Scholar 

  80. Bikle DD, Siiteri PK, Ryzen E, Haddad JG (1985) Serum protein binding of 1,25-dihydroxyvitamin D: a reevaluation by direct measurement of free metabolite levels. J Clin Endocrinol Metab 61(5):969–975

    Article  CAS  PubMed  Google Scholar 

  81. Bikle DD, Halloran BP, Gee E, Ryzen E, Haddad JG (1986) Free 25-hydroxyvitamin D levels are normal in subjects with liver disease and reduced total 25-hydroxyvitamin D levels. J Clin Invest 78(3):748–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Heureux N, Lindhout E, Swinkels L (2017) A direct assay for measuring free 25-hydroxyvitamin D. J AOAC Int 100(5):1318–1322

    Article  CAS  PubMed  Google Scholar 

  83. Bikle DD, Gee E, Halloran B, Kowalski MA, Ryzen E, Haddad JG (1986) Assessment of the free fraction of 25-hydroxyvitamin D in serum and its regulation by albumin and the vitamin D-binding protein. J Clin Endocrinol Metab 63(4):954–959

    Article  CAS  PubMed  Google Scholar 

  84. Feldman H, Rodbard D, Levine D (1972) Mathematical theory of cross-reactive radioimmunoassay and ligand-binding systems of equilibrium. Anal Biochem 45(2):530–556

    Article  CAS  PubMed  Google Scholar 

  85. Nielson CM, Jones KS, Bouillon R, Osteoporotic Fractures in Men Research G, Chun RF, Jacobs J et al (2016) Role of assay type in determining free 25-hydroxyvitamin D levels in diverse populations. N Engl J Med 374(17):1695–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nielson CM, Jones KS, Chun RF, Jacobs JM, Wang Y, Hewison M et al (2016) Free 25-hydroxyvitamin D: impact of vitamin D binding protein assays on racial-genotypic associations. J Clin Endocrinol Metab 101(5):2226–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schwartz JB, Lai J, Lizaola B, Kane L, Markova S, Weyland P et al (2014) A comparison of measured and calculated free 25(OH) vitamin D levels in clinical populations. J Clin Endocrinol Metab 99(5):1631–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Powe CE, Evans MK, Wenger J, Zonderman AB, Berg AH, Nalls M et al (2013) Vitamin D-binding protein and vitamin D status of black Americans and white Americans. N Engl J Med 369(21):1991–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bikle DD, Malmstroem S, Schwartz J (2017) Current controversies: are free vitamin metabolite levels a more accurate assessment of vitamin D status than total levels? Endocrinol Metab Clin N Am 46(4):901–918

    Article  Google Scholar 

  90. Hoofnagle AN, Eckfeldt JH, Lutsey PL (2015) Vitamin D-binding protein concentrations quantified by mass spectrometry. N Engl J Med 373(15):1480–1482

    Article  PubMed  PubMed Central  Google Scholar 

  91. Denburg MR, Hoofnagle AN, Sayed S, Gupta J, de Boer IH, Appel LJ et al (2016) Comparison of two ELISA methods and mass spectrometry for measurement of vitamin D-binding protein: implications for the assessment of bioavailable vitamin D concentrations across genotypes. J Bone Miner Res 31(6):1128–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Henderson CM, Lutsey PL, Misialek JR, Laha TJ, Selvin E, Eckfeldt JH et al (2016) Measurement by a novel LC-MS/MS methodology reveals similar serum concentrations of vitamin D-binding protein in blacks and whites. Clin Chem 62(1):179–187

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

None of the authors declares any funding or grant related to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Makris.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makris, K., Sempos, C. & Cavalier, E. The measurement of vitamin D metabolites part II—the measurement of the various vitamin D metabolites. Hormones 19, 97–107 (2020). https://doi.org/10.1007/s42000-020-00188-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-020-00188-9

Keywords

Navigation