Skip to main content

Advertisement

Log in

Selenium and selenoprotein P in nonalcoholic fatty liver disease

  • Review Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Conflicting data link nonalcoholic fatty liver disease (NAFLD), a disease with no currently approved treatment, with selenium (Se) and selenoprotein P (SELENOP), a glycoprotein synthesized and primarily secreted by the hepatocytes, functioning as a Se transporter from the liver to other tissues. This review aims to summarize the evidence between Se, SELENOP, and NAFLD, which may hopefully clarify whether current data on Se and SELENOP in NAFLD warrant further investigation for their diagnostic and therapeutic potential. Most, albeit not all, experimental data show a favorable effect of Se on hepatic steatosis, inflammation, and fibrosis. It seems that Se may exert an antioxidant effect on the liver, at least partly via increasing the activity of glutathione peroxidase, whose depletion contributes to the pathogenesis of hepatic inflammation and fibrosis. Se may also affect metalloproteinases, cytokines, and growth factors participating in the pathogenesis of NAFLD and, most importantly, may induce the apoptosis of hepatic stellate cells, the key players in hepatic fibrosis. However, the association between Se or SELENOP and insulin resistance, which is a principal pathogenetic factor of NAFLD, remains inconclusive. Clinical studies on Se or SELENOP in NAFLD are conflicting, apart from those in advanced liver disease (cirrhosis or hepatocellular carcinoma), in which lower circulating Se and SELENOP are constant findings. Existing data warrant further mechanistic studies in valid animal models of human NAFLD. Prospective cohort studies and possibly randomized controlled trials are also needed to elucidate the diagnostic and therapeutic potential of Se supplementation in selected NAFLD individuals with Se deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polyzos SA, Mantzoros CS (2016) Nonalcoholic fatty future disease. Metabolism 65:1007–1016

    Article  CAS  PubMed  Google Scholar 

  2. Bugianesi E, Rosso C, Cortez-Pinto H (2016) How to diagnose NAFLD in 2016. J Hepatol 65:643–644

    Article  CAS  PubMed  Google Scholar 

  3. Goh GB, McCullough AJ (2016) Natural history of nonalcoholic fatty liver disease. Dig Dis Sci 61:1226–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Polyzos SA, Mantzoros CS (2014) Necessity for timely noninvasive diagnosis of nonalcoholic fatty liver disease. Metabolism 63:161–167

    Article  CAS  PubMed  Google Scholar 

  5. Polyzos SA, Slavakis A, Koumerkeridis G, Katsinelos P, Kountouras J (2018) Noninvasive liver fibrosis tests in patients with nonalcoholic fatty liver disease: an external validation cohort. Horm Metab Res 51:134–140

    PubMed  Google Scholar 

  6. Mintziori G, Polyzos SA (2016) Emerging and future therapies for nonalcoholic steatohepatitis in adults. Expert Opin Pharmacother 17:1937–1946

    Article  CAS  PubMed  Google Scholar 

  7. Wendt S, Schomburg L, Manzanares W, Stoppe C (2019) Selenium in cardiac surgery. Nutr Clin Pract 34:528–539

    Article  CAS  PubMed  Google Scholar 

  8. Burk RF, Hill KE, Motley AK, Byrne DW, Norsworthy BK (2015) Selenium deficiency occurs in some patients with moderate-to-severe cirrhosis and can be corrected by administration of selenate but not selenomethionine: a randomized controlled trial. Am J Clin Nutr 102:1126–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Valea A, Georgescu CE (2018) Selenoproteins in human body: focus on thyroid pathophysiology. Hormones (Athens) 17:183–196

    Article  Google Scholar 

  10. Burk RF, Hill KE (2005) Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu Rev Nutr 25:215–235

    Article  CAS  PubMed  Google Scholar 

  11. Thuluvath PJ, Triger DR (1992) Selenium in chronic liver disease. J Hepatol 14:176–182

    Article  CAS  PubMed  Google Scholar 

  12. Polyzos SA, Toulis KA, Goulis DG, Zavos C, Kountouras J (2011) Serum total adiponectin in nonalcoholic fatty liver disease: a systematic review and meta-analysis. Metabolism 60:313–326

    Article  CAS  PubMed  Google Scholar 

  13. Stapleton SR, Garlock GL, Foellmi-Adams L, Kletzien RF (1997) Selenium: potent stimulator of tyrosyl phosphorylation and activator of MAP kinase. Biochim Biophys Acta 1355:259–269

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Z, Li S, Jiang H, Liu B, Lv Z, Guo C, Zhang H (2017) Effects of selenium on apoptosis and abnormal amino acid metabolism induced by excess fatty acid in isolated rat hepatocytes. Mol Nutr Food Res:61

  15. Mezey E, Liu X, Potter JJ (2011) The combination of selenium and vitamin E inhibits type I collagen formation in cultured hepatic stellate cells. Biol Trace Elem Res 140:82–94

    Article  CAS  PubMed  Google Scholar 

  16. Clarke C, Baghdadi H, Howie AF, Mason JI, Walker SW, Beckett GJ (2010) Selenium supplementation attenuates procollagen-1 and interleukin-8 production in fat-loaded human C3A hepatoblastoma cells treated with TGFbeta1. Biochim Biophys Acta 1800:611–618

    Article  CAS  PubMed  Google Scholar 

  17. Polyzos SA, Kountouras J, Zavos C (2009) The multi-hit process and the antagonistic roles of tumor necrosis factor-alpha and adiponectin in nonalcoholic fatty liver disease. Hippokratia 13:127

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Chen X (2011) Reducing selenoprotein P expression suppresses adipocyte differentiation as a result of increased preadipocyte inflammation. Am J Physiol Endocrinol Metab 300:E77–E85

    Article  CAS  PubMed  Google Scholar 

  19. Polyzos SA, Kountouras J, Zavos C (2009) Nonalcoholic fatty liver disease: the pathogenetic roles of insulin resistance and adipocytokines. Curr Mol Med 72:299–314

    Article  Google Scholar 

  20. Hesse-Bahr K, Dreher I, Kohrle J (2000) The influence of the cytokines Il-1beta and INFgamma on the expression of selenoproteins in the human hepatocarcinoma cell line HepG2. Biofactors 11:83–85

    Article  CAS  PubMed  Google Scholar 

  21. Cui D, Liang T, Sun L, Meng L, Yang C, Wang L, Liang T, Li Q (2018) Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis. Pharm Biol 56:528–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schafer K, Kyriakopoulos A, Gessner H, Grune T, Behne D (2004) Effects of selenium deficiency on fatty acid metabolism in rats fed fish oil-enriched diets. J Trace Elem Med Biol 18:89–97

    Article  PubMed  CAS  Google Scholar 

  23. Geillinger KE, Rathmann D, Kohrle J, Fiamoncini J, Daniel H, Kipp AP (2014) Hepatic metabolite profiles in mice with a suboptimal selenium status. J Nutr Biochem 25:914–922

    Article  CAS  PubMed  Google Scholar 

  24. Han J, Liang H, Yi J, Tan W, He S, Wang S, Li F, Wu X, Ma J, Shi X, Guo X, Bai C (2017) Long-term selenium-deficient diet induces liver damage by altering hepatocyte ultrastructure and MMP1/3 and TIMP1/3 expression in growing rats. Biol Trace Elem Res 175:396–404

    Article  CAS  PubMed  Google Scholar 

  25. George J (2018) Determination of selenium during pathogenesis of hepatic fibrosis employing hydride generation and inductively coupled plasma mass spectrometry. Biol Chem 399:499–509

    Article  CAS  PubMed  Google Scholar 

  26. Liu L, Geng X, Cai Y, Copple B, Yoshinaga M, Shen J, Nebert DW, Wang H, Liu Z (2018) Hepatic ZIP8 deficiency is associated with disrupted selenium homeostasis, liver pathology, and tumor formation. Am J Physiol Gastrointest Liver Physiol 315:G569–G579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ozardali I, Bitiren M, Karakilcik AZ, Zerin M, Aksoy N, Musa D (2004) Effects of selenium on histopathological and enzymatic changes in experimental liver injury of rats. Exp Toxicol Pathol 56:59–64

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Q, Qian ZY, Zhou PH, Zhou XL, Zhang DL, He N, Zhang J, Liu YH, Gu Q (2018) Effects of oral selenium and magnesium co-supplementation on lipid metabolism, antioxidative status, histopathological lesions, and related gene expression in rats fed a high-fat diet. Lipids Health Dis 17:165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Shidfar F, Faghihi A, Amiri HL, Mousavi SN (2018) Regression of nonalcoholic fatty liver disease with zinc and selenium co-supplementation after disease progression in rats. Iran J Med Sci 43:26–31

    PubMed  PubMed Central  Google Scholar 

  30. Nido SA, Shituleni SA, Mengistu BM, Liu Y, Khan AZ, Gan F, Kumbhar S, Huang K (2016) Effects of selenium-enriched probiotics on lipid metabolism, antioxidative status, histopathological lesions, and related gene expression in mice fed a high-fat diet. Biol Trace Elem Res 171:399–409

    Article  CAS  PubMed  Google Scholar 

  31. Ren D, Hu Y, Luo Y, Yang X (2015) Selenium-containing polysaccharides from Ziyang green tea ameliorate high-fructose diet induced insulin resistance and hepatic oxidative stress in mice. Food Funct 6:3342–3350

    Article  CAS  PubMed  Google Scholar 

  32. Luo M, Huang S, Zhang J, Zhang L, Mehmood K, Jiang J, Zhang N, Zhou D (2019) Effect of selenium nanoparticles against abnormal fatty acid metabolism induced by hexavalent chromium in chicken’s liver. Environ Sci Pollut Res Int 26:21828–21834

    Article  CAS  PubMed  Google Scholar 

  33. Ziemlanski S, Wielgus-Serafinska E, Panczenko-Kresowska B, Zelakiewicz K (1984) Effect of long-term diet enrichment with selenium, vitamin E and vitamin B15 on the degree of fatty infiltration of the liver. Acta Phys Pol A 35:382–397

    CAS  Google Scholar 

  34. Polyzos SA, Kountouras J, Zavos C, Deretzi G (2012) Nonalcoholic fatty liver disease: multimodal treatment options for a pathogenetically multiple-hit disease. J Clin Gastroenterol 46:272–284

    Article  PubMed  Google Scholar 

  35. Gonzalez-Reimers E, Monedero-Prieto MJ, Gonzalez-Perez JM, Duran-Castellon MC, Galindo-Martin L, Abreu-Gonzalez P, Sanchez-Perez MJ, Santolaria-Fernandez F (2013) Relative and combined effects of selenium, protein deficiency and ethanol on hepatocyte ballooning and liver steatosis. Biol Trace Elem Res 154:281–287

    Article  CAS  PubMed  Google Scholar 

  36. Hamid M, Abdulrahim Y, Liu D, Qian G, Khan A, Huang K (2018) The hepatoprotective effect of selenium-enriched yeast and gum Arabic combination on carbon tetrachloride-induced chronic liver injury in rats. J Food Sci 83:525–534

    Article  CAS  PubMed  Google Scholar 

  37. Chen L, Pan DD, Zhou J, Jiang YZ (2005) Protective effect of selenium-enriched Lactobacillus on CCl4-induced liver injury in mice and its possible mechanisms. World J Gastroenterol 11:5795–5800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Del Bas JM, Rodriguez B, Puiggros F, Marine S, Rodriguez MA, Morina D, Armengol L, Caimari A, Arola L (2017) Hepatic accumulation of S-adenosylmethionine in hamsters with non-alcoholic-fatty liver disease associated to metabolic syndrome under selenium and vitamin E deficiency. Clin Sci (Lond) 133:409–423

    Google Scholar 

  39. Ding M, Potter JJ, Liu X, Torbenson MS, Mezey E (2010) Selenium supplementation decreases hepatic fibrosis in mice after chronic carbon tetrachloride administration. Biol Trace Elem Res 133:83–97

    Article  CAS  PubMed  Google Scholar 

  40. Polyzos SA, Kountouras J, Mantzoros CS (2016) Adipokines in nonalcoholic fatty liver disease. Metabolism 65:1062–1079

    Article  CAS  PubMed  Google Scholar 

  41. Shen XH, Cheng WF, Li XH, Sun JQ, Li F, Ma L, Xie LM (2005) Effects of dietary supplementation with vitamin E and selenium on rat hepatic stellate cell apoptosis. World J Gastroenterol 11:4957–4961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang M, Song G, Minuk GY (1996) Effects of hepatic stimulator substance, herbal medicine, selenium/vitamin E, and ciprofloxacin on cirrhosis in the rat. Gastroenterology 110:1150–1155

    Article  CAS  PubMed  Google Scholar 

  43. Liu Y, Liu Q, Ye G, Khan A, Liu J, Gan F, Zhang X, Kumbhar S, Huang K (2015) Protective effects of selenium-enriched probiotics on carbon tetrachloride-induced liver fibrosis in rats. J Agric Food Chem 63:242–249

    Article  CAS  PubMed  Google Scholar 

  44. Liu Y, Liu Q, Hesketh J, Huang D, Gan F, Hao S, Tang S, Guo Y, Huang K (2018) Protective effects of selenium-glutathione-enriched probiotics on CCl4-induced liver fibrosis. J Nutr Biochem 58:138–149

    Article  CAS  PubMed  Google Scholar 

  45. Wasser S, Lim GY, Ong CN, Tan CE (2001) Anti-oxidant ebselen causes the resolution of experimentally induced hepatic fibrosis in rats. J Gastroenterol Hepatol 16:1244–1253

    Article  CAS  PubMed  Google Scholar 

  46. Turkdogan MK, Agaoglu Z, Yener Z, Sekeroglu R, Akkan HA, Avci ME (2001) The role of antioxidant vitamins (C and E), selenium and Nigella sativa in the prevention of liver fibrosis and cirrhosis in rabbits: new hopes. Dtsch Tierarztl Wochenschr 108:71–73

    CAS  PubMed  Google Scholar 

  47. Renko K, Hofmann PJ, Stoedter M, Hollenbach B, Behrends T, Kohrle J, Schweizer U, Schomburg L (2009) Down-regulation of the hepatic selenoprotein biosynthesis machinery impairs selenium metabolism during the acute phase response in mice. FASEB J 23:1758–1765

    Article  CAS  PubMed  Google Scholar 

  48. Murano K, Ogino H, Okuno T, Arakawa T, Ueno H (2018) Role of supplementary selenium on the induction of insulin resistance and oxidative stress in NSY mice fed a high fat diet. Biol Pharm Bull 41:92–98

    Article  CAS  PubMed  Google Scholar 

  49. Polyzos SA, Mantzoros CS (2016) Adiponectin as a target for the treatment of nonalcoholic steatohepatitis with thiazolidinediones: a systematic review. Metabolism 65:1297–1306

    Article  CAS  PubMed  Google Scholar 

  50. Polyzos SA, Kountouras J, Mantzoros CS (2019) Obesity and nonalcoholic fatty liver disease: from pathophysiology to therapeutics. Metabolism 92:82–97

    Article  CAS  PubMed  Google Scholar 

  51. Dubuisson L, Boussarie L, Bedin CA, Balabaud C, Bioulac-Sage P (1995) Transformation of sinusoids into capillaries in a rat model of selenium-induced nodular regenerative hyperplasia: an immunolight and immunoelectron microscopic study. Hepatology 21:805–814

    CAS  PubMed  Google Scholar 

  52. Bioulac-Sage P, Dubuisson L, Bedin C, Gonzalez P, de Tinguy-Moreaud E, Garcin H, Balabaud C (1992) Nodular regenerative hyperplasia in the rat induced by a selenium-enriched diet: study of a model. Hepatology 16:418–425

    Article  CAS  PubMed  Google Scholar 

  53. Mihailovic M, Matic G, Lindberg P, Zigic B (1992) Accidental selenium poisoning of growing pigs. Biol Trace Elem Res 33:63–69

    Article  CAS  PubMed  Google Scholar 

  54. Sorensen EM, Harlan CW, Bell JS, Bauer TL, Pradzynski AH (1983) Hepatocyte changes following selenium accumulation in a freshwater teleost. Am J Forensic Med Pathol 4:25–32

    Article  CAS  PubMed  Google Scholar 

  55. Zhao Z, Barcus M, Kim J, Lum KL, Mills C, Lei XG (2016) High dietary selenium intake alters lipid metabolism and protein synthesis in liver and muscle of pigs. J Nutr 146:1625–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang C, Yang S, Zhang N, Mu Y, Ren H, Wang Y, Li K (2014) Long-term supranutritional supplementation with selenate decreases hyperglycemia and promotes fatty liver degeneration by inducing hyperinsulinemia in diabetic db/db mice. PLoS One 9:e101315

    Article  PubMed  PubMed Central  Google Scholar 

  57. Berntssen MHG, Sundal TK, Olsvik PA, Amlund H, Rasinger JD, Sele V, Hamre K, Hillestad M, Buttle L, Ornsrud R (2017) Sensitivity and toxic mode of action of dietary organic and inorganic selenium in Atlantic salmon (Salmo salar). Aquat Toxicol 192:116–126

    Article  CAS  PubMed  Google Scholar 

  58. Mueller AS, Pallauf J (2006) Compendium of the antidiabetic effects of supranutritional selenate doses. In vivo and in vitro investigations with type II diabetic db/db mice. J Nutr Biochem 17:548–560

    Article  CAS  PubMed  Google Scholar 

  59. Seale LA, Hashimoto AC, Kurokawa S, Gilman CL, Seyedali A, Bellinger FP, Raman AV, Berry MJ (2012) Disruption of the selenocysteine lyase-mediated selenium recycling pathway leads to metabolic syndrome in mice. Mol Cell Biol 32:4141–4154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang X, Zhang W, Chen H, Liao N, Wang Z, Zhang X, Hai C (2014) High selenium impairs hepatic insulin sensitivity through opposite regulation of ROS. Toxicol Lett 224:16–23

    Article  CAS  PubMed  Google Scholar 

  61. Misu H, Takamura T, Takayama H, Hayashi H, Matsuzawa-Nagata N, Kurita S, Ishikura K, Ando H, Takeshita Y, Ota T, Sakurai M, Yamashita T, Mizukoshi E, Yamashita T, Honda M, Miyamoto K, Kubota T, Kubota N, Kadowaki T, Kim HJ, Lee IK, Minokoshi Y, Saito Y, Takahashi K, Yamada Y, Takakura N, Kaneko S (2010) A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab 12:483–495

    Article  CAS  PubMed  Google Scholar 

  62. Mita Y, Nakayama K, Inari S, Nishito Y, Yoshioka Y, Sakai N, Sotani K, Nagamura T, Kuzuhara Y, Inagaki K, Iwasaki M, Misu H, Ikegawa M, Takamura T, Noguchi N, Saito Y (2017) Selenoprotein P-neutralizing antibodies improve insulin secretion and glucose sensitivity in type 2 diabetes mouse models. Nat Commun 8:1658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Jung TW, Choi HY, Lee SY, Hong HC, Yang SJ, Yoo HJ, Youn BS, Baik SH, Choi KM (2013) Salsalate and adiponectin improve palmitate-induced insulin resistance via inhibition of selenoprotein P through the AMPK-FOXO1alpha pathway. PLoS One 8:e66529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bonnefont-Rousselot D, Ratziu V, Giral P, Charlotte F, Beucler I, Poynard T (2006) Blood oxidative stress markers are unreliable markers of hepatic steatosis. Aliment Pharmacol Ther 23:91–98

    Article  CAS  PubMed  Google Scholar 

  65. Guo CH, Chen PC, Ko WS (2013) Status of essential trace minerals and oxidative stress in viral hepatitis C patients with nonalcoholic fatty liver disease. Int J Med Sci 10:730–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang Z, Yan C, Liu G, Niu Y, Zhang W, Lu S, Li X, Zhang H, Ning G, Fan J, Qin L, Su Q (2016) Plasma selenium levels and nonalcoholic fatty liver disease in Chinese adults: a cross-sectional analysis. Sci Rep 6:37288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Choi HY, Hwang SY, Lee CH, Hong HC, Yang SJ, Yoo HJ, Seo JA, Kim SG, Kim NH, Baik SH, Choi DS, Choi KM (2013) Increased selenoprotein p levels in subjects with visceral obesity and nonalcoholic fatty liver disease. Diabetes Metab J 37:63–71

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cetindagli I, Kara M, Tanoglu A, Ozalper V, Aribal S, Hancerli Y, Unal M, Ozari O, Hira S, Kaplan M, Yazgan Y (2017) Evaluation of endothelial dysfunction in patients with nonalcoholic fatty liver disease: association of selenoprotein P with carotid intima-media thickness and endothelium-dependent vasodilation. Clin Res Hepatol Gastroenterol 41:516–524

    Article  CAS  PubMed  Google Scholar 

  69. di Giuseppe R, Koch M, Schlesinger S, Borggrefe J, Both M, Muller HP, Kassubek J, Jacobs G, Nothlings U, Lieb W (2017) Circulating selenoprotein P levels in relation to MRI-derived body fat volumes, liver fat content, and metabolic disorders. Obesity (Silver Spring) 25:1128–1135

    Article  CAS  Google Scholar 

  70. Polyzos SA, Kountouras J, Mavrouli M, Katsinelos P, Doulberis M, Gavana E, Duntas L (2019) Selenoprotein P in patients with nonalcoholic fatty liver disease. Exp Clin Endocrinol Diabetes. https://doi.org/10.1055/a-0811-9136

    Article  CAS  Google Scholar 

  71. Flisiak-Jackiewicz M, Bobrus-Chociej A, Wasilewska N, Tarasow E, Wojtkowska M, Lebensztejn DM (2019) Can hepatokines be regarded as novel non-invasive serum biomarkers of intrahepatic lipid content in obese children? Adv Med Sci 64:280–284

    Article  PubMed  Google Scholar 

  72. Valimaki MJ, Harju KJ, Ylikahri RH (1983) Decreased serum selenium in alcoholics—a consequence of liver dysfunction. Clin Chim Acta 130:291–296

    Article  CAS  PubMed  Google Scholar 

  73. Aaseth J, Alexander J, Thomassen Y, Blomhoff JP, Skrede S (1982) Serum selenium levels in liver diseases. Clin Biochem 15:281–283

    Article  CAS  PubMed  Google Scholar 

  74. Pan D, Huang H (2013) Hair selenium levels in hepatic steatosis patients. Biol Trace Elem Res 152:305–309

    Article  CAS  PubMed  Google Scholar 

  75. Machado MV, Ravasco P, Jesus L, Marques-Vidal P, Oliveira CR, Proenca T, Baldeiras I, Camilo ME, Cortez-Pinto H (2008) Blood oxidative stress markers in non-alcoholic steatohepatitis and how it correlates with diet. Scand J Gastroenterol 43:95–102

    Article  CAS  PubMed  Google Scholar 

  76. Loguercio C, De Girolamo V, Federico A, Feng SL, Crafa E, Cataldi V, Gialanella G, Moro R, Del Vecchio Blanco C (2001) Relationship of blood trace elements to liver damage, nutritional status, and oxidative stress in chronic nonalcoholic liver disease. Biol Trace Elem Res 81:245–254

    Article  CAS  PubMed  Google Scholar 

  77. Damiot A, Demangel R, Noone J, Chery I, Zahariev A, Normand S, Brioche T, Crampes F, de Glisezinski I, Lefai E, Bareille MP, Chopard A, Drai J, Collin-Chavagnac D, Heer M, Gauquelin-Koch G, Prost M, Simon P, Py G, Blanc S, Simon C, Bergouignan A, O'Gorman DJ (2019) A nutrient cocktail prevents lipid metabolism alterations induced by 20 days of daily steps reduction and fructose overfeeding: result from a randomized study. J Appl Physiol (1985) 126:88–101

    Article  CAS  Google Scholar 

  78. Softic S, Cohen DE, Kahn CR (2016) Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig Dis Sci 61:1282–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu J, Zeng C, Yang Z, Li X, Lei G, Xie D, Wang Y, Wei J, Yang T (2019) Association between dietary selenium intake and the prevalence of nonalcoholic fatty liver disease: a cross-sectional study. J Am Coll Nutr. https://doi.org/10.1080/07315724.2019.16132711-9

  80. Nangliya V, Sharma A, Yadav D, Sunder S, Nijhawan S, Mishra S (2015) Study of trace elements in liver cirrhosis patients and their role in prognosis of disease. Biol Trace Elem Res 165:35–40

    Article  CAS  PubMed  Google Scholar 

  81. Kolachi NF, Kazi TG, Afridi HI, Kazi NG, Khan S (2012) Investigation of essential trace and toxic elements in biological samples (blood, serum and scalp hair) of liver cirrhotic/cancer female patients before and after mineral supplementation. Clin Nutr 31:967–973

    Article  CAS  PubMed  Google Scholar 

  82. Burk RF, Early DS, Hill KE, Palmer IS, Boeglin ME (1998) Plasma selenium in patients with cirrhosis. Hepatology 27:794–798

    Article  CAS  PubMed  Google Scholar 

  83. Casaril M, Stanzial AM, Gabrielli GB, Capra F, Zenari L, Galassini S, Moschini G, Liu NQ, Corrocher R (1989) Serum selenium in liver cirrhosis: correlation with markers of fibrosis. Clin Chim Acta 182:221–227

    Article  CAS  PubMed  Google Scholar 

  84. Kim IW, Bae SM, Kim YW, Liu HB, Bae SH, Choi JY, Yoon SK, Chaturvedi PK, Battogtokh G, Ahn WS (2012) Serum selenium levels in Korean hepatoma patients. Biol Trace Elem Res 148:25–31

    Article  CAS  PubMed  Google Scholar 

  85. Lin CC, Huang JF, Tsai LY, Huang YL (2006) Selenium, iron, copper, and zinc levels and copper-to-zinc ratios in serum of patients at different stages of viral hepatic diseases. Biol Trace Elem Res 109:15–24

    Article  CAS  PubMed  Google Scholar 

  86. Lee SM, Kwak SH, Koo JN, Oh IH, Kwon JE, Kim BJ, Kim SM, Kim SY, Kim GM, Joo SK, Koo BK, Shin S, Vixay C, Norwitz ER, Park CW, Jun JK, Kim W, Park JS (2019) Non-alcoholic fatty liver disease in the first trimester and subsequent development of gestational diabetes mellitus. Diabetologia 62:238–248

    Article  CAS  PubMed  Google Scholar 

  87. di Giuseppe R, Plachta-Danielzik S, Koch M, Nothlings U, Schlesinger S, Borggrefe J, Both M, Muller HP, Kassubek J, Jacobs G, Lieb W (2019) Dietary pattern associated with selenoprotein P and MRI-derived body fat volumes, liver signal intensity, and metabolic disorders. Eur J Nutr 58:1067–1079

    Article  PubMed  CAS  Google Scholar 

  88. Li CL, Nan KJ, Tian T, Sui CG, Liu YF (2007) Selenoprotein P mRNA expression in human hepatic tissues. World J Gastroenterol 13:2363–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Duntas LH (2009) Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm Metab Res 41:443–447

    Article  CAS  PubMed  Google Scholar 

  90. Duntas LH, Benvenga S (2015) Selenium: an element for life. Endocrine 48:756–775

    Article  CAS  PubMed  Google Scholar 

  91. Polyzos SA, Kountouras J, Anastasiadis S, Doulberis M, Katsinelos P (2018) Nonalcoholic fatty liver disease: is it time for combination treatment and a diabetes-like approach? Hepatology 68:389

    Article  PubMed  Google Scholar 

  92. Bleys J, Navas-Acien A, Guallar E (2007) Serum selenium and diabetes in U.S. adults. Diabetes Care 30:829–834

    Article  CAS  PubMed  Google Scholar 

  93. Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268

    Article  CAS  PubMed  Google Scholar 

  94. Steinbrenner H, Speckmann B, Pinto A, Sies H (2011) High selenium intake and increased diabetes risk: experimental evidence for interplay between selenium and carbohydrate metabolism. J Clin Biochem Nutr 48:40–45

    Article  CAS  PubMed  Google Scholar 

  95. Stranges S, Navas-Acien A, Rayman MP, Guallar E (2010) Selenium status and cardiometabolic health: state of the evidence. Nutr Metab Cardiovasc Dis 20:754–760

    Article  CAS  PubMed  Google Scholar 

  96. Farrell G, Schattenberg JM, Leclercq I, Yeh MM, Goldin R, Teoh N, Schuppan D (2019) Mouse models of nonalcoholic steatohepatitis: toward optimization of their relevance to human nonalcoholic steatohepatitis. Hepatology 69:2241–2257

    Article  PubMed  Google Scholar 

  97. Charlton M, Krishnan A, Viker K, Sanderson S, Cazanave S, McConico A, Masuoko H, Gores G (2011) Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am J Physiol Gastrointest Liver Physiol 301:G825–G834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schomburg L, Melander O (2019) Letter by Schomburg and Melander regarding article, “Selenoprotein P promotes the development of pulmonary arterial hypertension: a possible novel therapeutic target”. Circulation 139:722–723

    Article  PubMed  Google Scholar 

  99. Hybsier S, Schulz T, Wu Z, Demuth I, Minich WB, Renko K, Rijntjes E, Kohrle J, Strasburger CJ, Steinhagen-Thiessen E, Schomburg L (2017) Sex-specific and inter-individual differences in biomarkers of selenium status identified by a calibrated ELISA for selenoprotein P. Redox Biol 11:403–414

    Article  CAS  PubMed  Google Scholar 

  100. Xia Y, Hill KE, Li P, Xu J, Zhou D, Motley AK, Wang L, Byrne DW, Burk RF (2010) Optimization of selenoprotein P and other plasma selenium biomarkers for the assessment of the selenium nutritional requirement: a placebo-controlled, double-blind study of selenomethionine supplementation in selenium-deficient Chinese subjects. Am J Clin Nutr 92:525–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We sincerely thank Professor Lutz Schomburg (Charité Universitätsmedizin Berlin) for his expert scientific input and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stergios A. Polyzos.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyzos, S.A., Kountouras, J., Goulas, A. et al. Selenium and selenoprotein P in nonalcoholic fatty liver disease. Hormones 19, 61–72 (2020). https://doi.org/10.1007/s42000-019-00127-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-019-00127-3

Keywords

Navigation