Skip to main content
Log in

Efficient pinnick oxidation by a superheated micro-reaction process

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract   

The Pinnick oxidation, due to its tolerance for sensitive functional groups, is widely used in the process of oxidizing α,β-unsaturated aldehydes to corresponding carboxylic acids. The reaction reagents typically include sodium chlorite, buffer salts, and a scavenger. However, the controllability of Pinnick oxidation in the batch reaction process is poor due to the inherent limitations of the reactor’s performance. This leads to potential safety risks and necessitates the reaction to proceed slowly under conditions of low temperature and low concentration. In this work, we introduced a new continuous micro-reaction process to intensify the Pinnick oxidation. The water-soluble crotonic acid was selected as a typical object of study. Through the study of reaction parameters and the construction of a micro-reaction system, efficient continuous process was achieved under high-temperature and high-pressure conditions for the first time. Compared to the batch process, the reaction benefited from the superheated condition resulting in a significant acceleration of the reaction rate, efficient gas–liquid interphase mass transfer allowing for effective utilization of the generated chlorine dioxide, and the inherent safety of the microreactor enabling an increase in reaction concentration. In addition, the buffer salts used in the Pinnick oxidation has been successfully replaced by hydrochloric acid and applied to the continuous flow. This work shows the tremendous potential of microreactors in utilizing harsh reaction conditions to achieve process intensification.

Graphical abstract

Article Highlights

  • A superheated micro-reaction process was introduced into the Pinnick oxidation to achieve efficient and safe preparation of crotonic acid.

  • Efficient gas–liquid interphase mass transfer in microreactor realized effective utilization of the by-product chlorine dioxide.

  • The great replacement of phosphate buffer salts with hydrochloric acid was achieved in continuous flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Krapcho AP (2006) Org Prep Proced Int 38:177–216. https://doi.org/10.1080/00304940609355988

    Article  CAS  Google Scholar 

  2. Bal BS, Childers WE, Pinnick HW (1981) Tetrahedron 37:2091–2096. https://doi.org/10.1016/S0040-4020(01)97963-3

    Article  CAS  Google Scholar 

  3. Lindgren BO, Nilsson T (1973) Acta Chem Scand 27:888–890. https://doi.org/10.3891/acta.chem.scand.27-0888

    Article  CAS  Google Scholar 

  4. Mannam S, Sekar G (2008) Tetrahedron Lett 49:1083–1086. https://doi.org/10.1016/j.tetlet.2007.11.198

    Article  CAS  Google Scholar 

  5. Kon Y, Imao D, Nakashima T, Sato K (2009) Chem Lett 38:430–431. https://doi.org/10.1246/cl.2009.430

    Article  CAS  Google Scholar 

  6. Mahmood A, Robinson GE, Powell L (1999) Org Process Res Dev 3:363–364. https://doi.org/10.1021/op990021h

    Article  CAS  Google Scholar 

  7. Hunsen M (2005) Synthesis 2005:2487–2490. https://doi.org/10.1055/s-2005-872085

    Article  CAS  Google Scholar 

  8. Bowden K, Heilbron IM, Jones ERH, Weedon BCL (1946) J Chem Soc (Resumed): 39–45. https://doi.org/10.1039/JR9460000039

  9. Travis BR, Sivakumar M, Hollist GO, Borhan B (2003) Org Lett 5:1031–1034. https://doi.org/10.1021/ol0340078

    Article  CAS  PubMed  Google Scholar 

  10. Baumeister T, Kitzler H, Obermaier K, Zikeli S, Röder T (2015) Org Process Res Dev 19:1576–1579. https://doi.org/10.1021/acs.oprd.5b00173

    Article  CAS  Google Scholar 

  11. Liu K-J, Fu Y-L, Xie L-Y, Wu C, He W-B, Peng S, Wang Z, Bao W-H, Cao Z, Xu X, He W-M (2018) ACS Sustain Chem Eng 6:4916–4921. https://doi.org/10.1021/acssuschemeng.7b04400

    Article  CAS  Google Scholar 

  12. Dai PF, Qu JP, Kang YB (2019) Org Lett 21:1393–1396. https://doi.org/10.1021/acs.orglett.9b00101

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka S, Kon Y, Uesaka Y, Morioka R, Tamura M, Sato K (2016) Chem Lett 45:188–190. https://doi.org/10.1246/cl.151024

    Article  CAS  Google Scholar 

  14. Fedevich OE, Levush SS, Fedevich EV, Kit YV (2003) Russ J Org Chem 39:29–32. https://doi.org/10.1023/A:1023482226774

    Article  CAS  Google Scholar 

  15. Vanoye L, Abdelaal M, Grundhauser K, Guicheret B, Fongarland P, De Bellefon C, Favre-Reguillon A (2019) Org Lett 21:10134–10138. https://doi.org/10.1021/acs.orglett.9b04193

    Article  CAS  PubMed  Google Scholar 

  16. Vanoye L, Favre-Réguillon A (2022) Org Process Res Dev 26:335–346. https://doi.org/10.1021/acs.oprd.1c00399

    Article  CAS  Google Scholar 

  17. Lehtinen C, Brunow G (2000) Org Process Res Dev 4:544–549. https://doi.org/10.1021/op000045k

    Article  CAS  Google Scholar 

  18. Murakami K, Toma T, Fukuyama T, Yokoshima S (2020) Angew Chem Int Ed 59:6253–6257. https://doi.org/10.1002/anie.201916611

    Article  CAS  Google Scholar 

  19. Ishihara J, Hagihara K, Chiba H, Ito K, Yanagisawa Y, Totani K (2000) Tadano K-i. Tetrahedron Lett 41:1771–1774. https://doi.org/10.1016/S0040-4039(00)00013-7

    Article  CAS  Google Scholar 

  20. Kuramochi K, Nagata S, Itaya H (1999) Takao K-i, Kobayashi S. Tetrahedron Lett 40:7371–7374. https://doi.org/10.1016/S0040-4039(99)01512-9

    Article  CAS  Google Scholar 

  21. Miyashita M, Sasaki M, Hattori I, Sakai M, Tanino K (2004) Science 305:495–499. https://doi.org/10.1126/science.1098851

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Nicolaou KC, Edmonds DJ, Li A, Tria GS (2007) Angew Chem Int Ed 46:3942–3945. https://doi.org/10.1002/anie.200700586

    Article  CAS  Google Scholar 

  23. Magauer T, Martin HJ, Mulzer J (2009) Angew Chem Int Ed 48:6032–6036. https://doi.org/10.1002/anie.200900522

    Article  CAS  Google Scholar 

  24. Hussein AA, Al-Hadedi AAM, Mahrath AJ, Moustafa GAI, Almalki FA, Alqahtani A, Shityakov S, Algazally ME (2020) R Soc Open Sci 7:191568. https://doi.org/10.1098/rsos.191568

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dalcanale E, Montanari F (1986) J Org Chem 51:567–569. https://doi.org/10.1021/jo00354a037

    Article  CAS  Google Scholar 

  26. Raach A, Reiser O (2000) J Prakt Chem 342:605–608. https://doi.org/10.1002/1521-3897(200006)342:6%3c605::Aid-prac605%3e3.3.Co;2-9

    Article  CAS  Google Scholar 

  27. Hessel V, Kralisch D, Kockmann N, Noel T, Wang Q (2013) Chemsuschem 6:746–789. https://doi.org/10.1002/cssc.201200766

    Article  CAS  PubMed  Google Scholar 

  28. Hessel V, Cortese B, De Croon M (2011) Chem Eng Sci 66:1426–1448. https://doi.org/10.1016/j.ces.2010.08.018

    Article  CAS  Google Scholar 

  29. Jensen KF, Reizman BJ, Newman SG (2014) Lab Chip 14:3206–3212. https://doi.org/10.1039/c4lc00330f

    Article  CAS  PubMed  Google Scholar 

  30. Jensen KF (2017) AIChE J 63:858–869. https://doi.org/10.1002/aic.15642

    Article  ADS  CAS  Google Scholar 

  31. Nagao I, Ishizaka T, Kawanami H (2016) Green Chem 18:3494–3498. https://doi.org/10.1039/c6gc01195k

    Article  CAS  Google Scholar 

  32. Razzaq T, Kappe CO (2010) Chem Asian J 5:1274–1289. https://doi.org/10.1002/asia.201000010

    Article  CAS  PubMed  Google Scholar 

  33. Shang M, Noël T, Su Y, Hessel V (2016) Ind Eng Chem Res 55:2669–2676. https://doi.org/10.1021/acs.iecr.5b04813

    Article  CAS  Google Scholar 

  34. Huang J-P, Sang F-N, Luo G-S, Xu J-H (2017) Chem Eng Sci 173:507–513. https://doi.org/10.1016/j.ces.2017.08.020

    Article  CAS  Google Scholar 

  35. Huang J, Geng Y, Wang Y, Xu J (2019) Ind Eng Chem Res 58:16389–16394. https://doi.org/10.1021/acs.iecr.9b02438

    Article  CAS  Google Scholar 

  36. Phung Hai TA, Samoylov AA, Rajput BS, Burkart MD (2022) ACS Omega 7:15350–15358. https://doi.org/10.1021/acsomega.1c06823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jin RY, Hu SQ, Zhang YH, Bo T (2008) Chin Chem Lett 19:1375–1378. https://doi.org/10.1016/j.cclet.2008.09.001

    Article  CAS  Google Scholar 

  38. Boucher MM, Furigay MH, Quach PK, Brindle CS (2017) Org Process Res Dev 21:1394–1403. https://doi.org/10.1021/acs.oprd.7b00231

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of

The supplementary China (22108264, 22378376) for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongjun Zhang or Yifeng Zhou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4.30 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Li, Y., Zhou, Y. et al. Efficient pinnick oxidation by a superheated micro-reaction process. J Flow Chem (2024). https://doi.org/10.1007/s41981-024-00324-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41981-024-00324-1

Keywords

Navigation