Skip to main content
Log in

Continuous flow synthesis of HMF from glucose using gadolinium (III) trifluoromethanesulfonate in Brønsted acidic ionic liquid as a catalytic system

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

The direct conversion of glucose to 5-(hydroxymethyl)furfural (HMF) has been considered a challenging process. In this study, we developed a new method using gadolinium(III) trifluoromethanesulfonate (Gd(OTf)3) in combination with Brønsted acidic ionic liquids as a catalytic system to search possibly more environmentally benign process. The reaction was carried out under a continuous-flow system. The one-step isomerization/dehydration of glucose to give the highest HMF with Gd(OTf)3 together with DBU-based Brønsted acidic ionic liquid in a low-cost home-built continuous system. The plausible mechanism was proposed with the Lewis acidic sites of Gd(OTf)3 for the isomerization step and DBU-based Brønsted acidic ionic liquid sites for the dehydration step. The recycling of catalytic system Gd(OTf)3/DBU-based Brønsted acidic ionic liquid in DMSO was examined. Our findings provided a safe and environmental process for the continuous conversion of glucose into HMF. The use of continuous flow for HMF synthesis ensures that the current method can be applied to the large-scale process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang H, Male J, Wang Y (2013) Recent advances in Hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds. ACS Catal 3(5):1047–1070

    Article  CAS  Google Scholar 

  2. Deuss PJ, Barta K, de Vries JG (2014) Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catal Sci Technol 4(5):1174–1196

    Article  CAS  Google Scholar 

  3. van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113(3):1499–1597

    Article  PubMed  Google Scholar 

  4. Mika LT, Csefalvay E, Nemeth A (2018) Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem Rev 118(2):505–613

    Article  CAS  PubMed  Google Scholar 

  5. Ye L, Han Y, Wang X, Lu X, Qi X, Yu H (2021) Recent progress in furfural production from hemicellulose and its derivatives: conversion mechanism, catalytic system, solvent selection. Mol Catal 515:111899

    Article  CAS  Google Scholar 

  6. Zhao Y, Lu K, Xu H, Zhu L, Wang S (2021) A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion. Renew Sust Energ Rev 139:110706

    Article  CAS  Google Scholar 

  7. Tran PH (2022) Recent approaches in the catalytic transformation of biomass-derived 5-hydroxymethylfurfural into 2,5-diformylfuran. ChemSusChem 15(13):e202200220

    Google Scholar 

  8. Wang F, Ouyang D, Zhou Z, Page SJ, Liu D, Zhao X (2021) Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. J Energy Chem 57:247–280

    Article  CAS  Google Scholar 

  9. Liu B, Zhang Z (2016) One-pot conversion of carbohydrates into furan derivatives via furfural and 5-Hydroxylmethylfurfural as intermediates. ChemSusChem 9(16):2015–2036

    Article  CAS  PubMed  Google Scholar 

  10. Rivas-Cantu RC, Jones KD, Mills PL (2013) A citrus waste-based biorefinery as a source of renewable energy: technical advances and analysis of engineering challenges. Waste Manag Res 31(4):413–420

    Article  PubMed  Google Scholar 

  11. Brasholz M, von Känel K, Hornung CH, Saubern S, Tsanaktsidis J (2011) Highly efficient dehydration of carbohydrates to 5-(chloromethyl)furfural (CMF), 5-(hydroxymethyl)furfural (HMF) and levulinic acid by biphasic continuous flow processing. Green Chem 13(5):1114–1117

    Article  CAS  Google Scholar 

  12. Teong SP, Yi G, Zhang Y (2014) Hydroxymethylfurfural production from bioresources: past, present and future. Green Chem 16(4):2015–2026

    Article  CAS  Google Scholar 

  13. Zhang J, Cai D, Qin Y, Liu D, Zhao X (2020) High value-added monomer chemicals and functional bio-based materials derived from polymeric components of lignocellulose by organosolv fractionation. Biofuels Bioprod Biorefin 14(2):371–401

    Article  CAS  Google Scholar 

  14. Motagamwala AH, Huang K, Maravelias CT, Dumesic JA (2019) Solvent system for effective near-term production of hydroxymethylfurfural (HMF) with potential for long-term process improvement. Energy Environ Sci 12(7):2212–2222

    Article  CAS  Google Scholar 

  15. Gregory GL, López-Vidal EM, Buchard A (2017) Polymers from sugars: cyclic monomer synthesis, ring-opening polymerisation, material properties and applications. ChemComm 53(14):2198–2217

    CAS  Google Scholar 

  16. Hu X, Lievens C, Larcher A, Li C-Z (2011) Reaction pathways of glucose during esterification: effects of reaction parameters on the formation of humin type polymers. Bioresour Technol 102(21):10104–10113

    Article  CAS  PubMed  Google Scholar 

  17. Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granados M (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9(4):1144–1189

    Article  CAS  Google Scholar 

  18. Lucas FWS, Grim RG, Tacey SA, Downes CA, Hasse J, Roman AM et al (2021) Electrochemical routes for the valorization of biomass-derived feedstocks: from chemistry to application. ACS Energy Lett 6(4):1205–1270

    Article  CAS  Google Scholar 

  19. Arshadi M, Attard TM, Lukasik RM, Brncic M, da Costa Lopes AM, Finell M et al (2016) Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the Agri-food chain. Green Chem 18(23):6160–6204

    Article  CAS  Google Scholar 

  20. Toftgaard Pedersen A, Ringborg R, Grotkjær T, Pedersen S, Woodley JM (2015) Synthesis of 5-hydroxymethylfurfural (HMF) by acid catalyzed dehydration of glucose–fructose mixtures. Chem Eng J 273:455–464

    Article  CAS  Google Scholar 

  21. Tirsoaga A, Kuncser V, Parvulescu VI, Coman SM (2021) Niobia-based magnetic nanocomposites: design and application in direct glucose dehydration to HMF. Catal Today 366:48–56

    Article  CAS  Google Scholar 

  22. Hu S, Zhang Z, Song J, Zhou Y, Han B (2009) Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. Green Chem 11(11):1746–1749

    Article  CAS  Google Scholar 

  23. Xue Z, Ma M-G, Li Z, Mu T (2016) Advances in the conversion of glucose and cellulose to 5-hydroxymethylfurfural over heterogeneous catalysts. RSC Adv 6(101):98874–98892

    Article  CAS  Google Scholar 

  24. Caes BR, Palte MJ, Raines RT (2013) Organocatalytic conversion of cellulose into a platform chemical. Chem Sci 4(1):196–199

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Z, Huber GW (2018) Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem Soc Rev 47(4):1351–1390

    Article  CAS  PubMed  Google Scholar 

  26. Wojcieszak R, Itabaiana I (2020) Engineering the future: perspectives in the 2,5-furandicarboxylic acid synthesis. Catal Today 354:211–217

    Article  CAS  Google Scholar 

  27. Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017–1023

    Article  CAS  Google Scholar 

  28. Williams PT, Onwudili J (2006) Subcritical and supercritical water gasification of cellulose, starch, glucose, and biomass waste. Energy Fuel 20(3):1259–1265

    Article  CAS  Google Scholar 

  29. Kadokawa J-I, Murakami M-A, Takegawa A, Kaneko Y (2009) Preparation of cellulose–starch composite gel and fibrous material from a mixture of the polysaccharides in ionic liquid. Carbohydr Polym 75(1):180–183

    Article  CAS  Google Scholar 

  30. Park Y-C, Oh EJ, Jo J-H, Jin Y-S, Seo J-H (2016) Recent advances in biological production of sugar alcohols. Curr Opin Biotechnol 37:105–113

    Article  CAS  PubMed  Google Scholar 

  31. Saenluang K, Thivasasith A, Dugkhuntod P, Pornsetmetakul P, Salakhum S, Namuangruk S et al (2020) In Situ Synthesis of Sn-Beta Zeolite Nanocrystals for Glucose to Hydroxymethylfurfural (HMF). Catalysts 10(11):1249

    Article  CAS  Google Scholar 

  32. Benítez A, Amaro-Gahete J, Chien Y-C, Caballero Á, Morales J, Brandell D (2022) Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host. Renew Sust Energ Rev 154:111783

    Article  Google Scholar 

  33. Binder JB, Cefali AV, Blank JJ, Raines RT (2010) Mechanistic insights on the conversion of sugars into 5-hydroxymethylfurfural. Energy Environ Sci 3(6):765–771

    Article  CAS  Google Scholar 

  34. Cai X, Wang Z, Ye Y, Wang D, Zhang Z, Zheng Z et al (2021) Conversion of chitin biomass into 5-hydroxymethylfurfural: a review. Renew Sust Energ Rev 150:111452

    Article  CAS  Google Scholar 

  35. Zhou P, Zhang Z (2016) One-pot catalytic conversion of carbohydrates into furfural and 5-hydroxymethylfurfural. Catal Sci Technol 6(11):3694–3712

    Article  CAS  Google Scholar 

  36. Parveen F, Upadhyayula S (2017) Efficient conversion of glucose to HMF using organocatalysts with dual acidic and basic functionalities - a mechanistic and experimental study. Fuel Process Technol 162:30–36

    Article  CAS  Google Scholar 

  37. Huang Y-B, Fu Y (2013) Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem 15(5):1095–1111

    Article  CAS  Google Scholar 

  38. Jia X, Ma J, Wang M, Du Z, Lu F, Wang F et al (2014) Promoted role of cu(NO3)2 on aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over VOSO4. Appl Catal A Gen 482:231–236

    Article  CAS  Google Scholar 

  39. Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131(5):1979–1985

    Article  CAS  PubMed  Google Scholar 

  40. Shi N, Liu Q, Zhang Q, Wang T, Ma L (2013) High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system. Green Chem 15(7):1967

    Article  CAS  Google Scholar 

  41. Marullo S, D’Anna F (2022) The Role Played by Ionic Liquids in Carbohydrates Conversion into 5-Hydroxymethylfurfural: A Recent Overview. Molecules 27(7):2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sajid M, Farooq U, Bary G, Azim MM, Zhao X (2021) Sustainable production of levulinic acid and its derivatives for fuel additives and chemicals: progress, challenges, and prospects. Green Chem 23(23):9198–9238

    Article  CAS  Google Scholar 

  43. Bohre A, Modak A, Chourasia V, Ram Jadhao P, Sharma K, Kishore PK (2022) Recent advances in supported ionic liquid catalysts for sustainable biomass valorisation to high-value chemicals and fuels. Chem Eng J 450:138032

    Article  CAS  Google Scholar 

  44. Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-Hydroxymethylfurfural. Science 316(5831):1597–1600

    Article  CAS  PubMed  Google Scholar 

  45. Ståhlberg T, Sørensen MG, Riisager A (2010) Direct conversion of glucose to 5-(hydroxymethyl)furfural in ionic liquids with lanthanide catalysts. Green Chem 12(2):321–325

    Article  Google Scholar 

  46. Zhang Z, Wang Q, Xie H, Liu W, Zhao Z (2011) Catalytic conversion of carbohydrates into 5-Hydroxymethylfurfural by germanium(IV) chloride in ionic liquids. ChemSusChem 4(1):131–138

    Article  PubMed  Google Scholar 

  47. Hou Q, Zhen M, Li W, Liu L, Liu J, Zhang S et al (2019) Efficient catalytic conversion of glucose into 5-hydroxymethylfurfural by aluminum oxide in ionic liquid. Appl Catal B Environ 253:1–10

    Article  CAS  Google Scholar 

  48. Bado-Nilles A, Diallo A-O, Marlair G, Pandard P, Chabot L, Geffard A et al (2015) Coupling of OECD standardized test and immunomarkers to select the most environmentally benign ionic liquids option—towards an innovative “safety by design” approach. J Hazard Mater 283:202–210

    Article  CAS  PubMed  Google Scholar 

  49. Chancelier L, Diallo AO, Santini CC, Marlair G, Gutel T, Mailley S et al (2014) Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage. Phys Chem Chem Phys 16(5):1967–1976

    Article  CAS  PubMed  Google Scholar 

  50. Diallo A-O, Morgan AB, Len C, Marlair G (2013) An innovative experimental approach aiming to understand and quantify the actual fire hazards of ionic liquids. Energy Environ Sci 6(3):699–710

    Article  CAS  Google Scholar 

  51. Diallo AO, Len C, Morgan AB, Marlair G (2012) Revisiting physico-chemical hazards of ionic liquids. Sep Purif Technol 97:228–234

    Article  CAS  Google Scholar 

  52. Diallo A-O, Fayet G, Len C, Marlair G (2012) Evaluation of heats of combustion of ionic liquids through use of existing and purpose-built models. Ind Eng Chem Res 51(7):3149–3156

    Article  CAS  Google Scholar 

  53. Tongtummachat T, Akkarawatkhoosith N, Kaewchada A, Jaree A (2020) Conversion of glucose to 5-Hydroxymethylfurfural in a microreactor. Front Chem 7:951

    Article  PubMed  PubMed Central  Google Scholar 

  54. Guo W, Heeres HJ, Yue J (2020) Continuous synthesis of 5-hydroxymethylfurfural from glucose using a combination of AlCl3 and HCl as catalyst in a biphasic slug flow capillary microreactor. Chem Eng J 381:122754

    Article  CAS  Google Scholar 

  55. Desir P, Saha B, Vlachos DG (2019) Ultrafast flow chemistry for the acid-catalyzed conversion of fructose. Energy Environ Sci 12(8):2463–2475

    Article  CAS  Google Scholar 

  56. Ly PD, Phan HB, Le Y-NT, Tran PH (2021) Continuous-flow synthesis of 5-Hydroxymethylfurfural, furfural from monosaccharides: a simple, fast, and practical method. ChemistrySelect 6(40):10827–10833

    Article  CAS  Google Scholar 

  57. Kobayashi S, Sugiura M, Kitagawa H, Lam WW-L (2002) Rare-earth metal triflates in organic synthesis. Chem Rev 102:2227–2302

    Article  CAS  PubMed  Google Scholar 

  58. Ollevier T (2013) New trends in bismuth-catalyzed synthetic transformations. Org Biomol Chem 11(17):2740–2755

    Article  CAS  PubMed  Google Scholar 

  59. Utami SP, Amin NS (2013) Optimization of glucose conversion to 5-hydroxymethylfulfural using [BMIM]cl with ytterbium triflate. Ind Crop Prod 41:64–70

    Article  CAS  Google Scholar 

  60. Nguyen QT, Hang AHT, Nguyen TLH, Chau DKN, Tran PH (2018) Phosphonium acidic ionic liquid: an efficient and recyclable homogeneous catalyst for the synthesis of 2-arylbenzoxazoles, 2-arylbenzimidazoles, and 2-arylbenzothiazoles. RSC Adv 8(21):11834–11842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Phan HB, Thi Nguyen QB, Luong CM, Tran KN, Tran PH (2021) A green and highly efficient synthesis of 5-hydroxymethylfurfural from monosaccharides using a novel binary ionic liquid mixture. Mol Catal 503:111428

    Article  CAS  Google Scholar 

  62. Beckerle K, Okuda J (2012) Conversion of glucose and cellobiose into 5-hydroxymethylfurfural (HMF) by rare earth metal salts in N,N′-dimethylacetamide (DMA). J Mol Catal A Chem 356:158–164

    Article  CAS  Google Scholar 

  63. Tsilomelekis G, Orella MJ, Lin Z, Cheng Z, Zheng W, Nikolakis V et al (2016) Molecular structure, morphology and growth mechanisms and rates of 5-hydroxymethyl furfural (HMF) derived humins. Green Chem 18(7):1983–1993

    Article  CAS  Google Scholar 

  64. Rasrendra C, Soetedjo J, Makertihartha I, Adisasmito S, Heeres H (2012) The catalytic conversion of d-glucose to 5-hydroxymethylfurfural in DMSO using metal salts. Top Catal 55(7):543–549

    Article  CAS  Google Scholar 

  65. Song D, Liu X, Khan S, Zhang C, Guo Y (2022) Nitrogen-rich macroporous covalent triazine frameworks bearing sulfonic acid-based ionic liquids for microwave-assisted conversion of fructose to 5–hydroxymethylfurfural. Fuel 327:125230

    Article  CAS  Google Scholar 

  66. Nasrollahzadeh M, Nezafat Z, Momenbeik F, Orooji Y (2022) Polystyrene immobilized Brønsted acid ionic liquid as an efficient and recyclable catalyst for the synthesis of 5-hydroxymethylfurfural from fructose. J Mol Liq 345:117811

    Article  CAS  Google Scholar 

  67. Phan HB, Luong CM, Nguyen LP, Bui BT, Nguyen HT, Mai BV et al (2022) Eco-friendly synthesis of 5-hydroxymethylfurfural and its applications as a starting material to synthesize valuable heterocyclic compounds. ACS Sustain Chem Eng 10(27):8673–8684

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National University, Ho Chi Minh City (VNU-HCM) under grant number 562-2022-18-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuong Hoang Tran.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 4588 kb)

ESM 2

(PDF 397 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phan, H.B., Nguyen, T.H., Le, D.D. et al. Continuous flow synthesis of HMF from glucose using gadolinium (III) trifluoromethanesulfonate in Brønsted acidic ionic liquid as a catalytic system. J Flow Chem 13, 121–132 (2023). https://doi.org/10.1007/s41981-022-00250-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-022-00250-0

Keywords

Navigation