Skip to main content
Log in

Development of a palladium-catalyzed decarboxylative arene cross-coupling of pyrrole derivatives in a flow reactor

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Palladium-catalyzed decarboxylative cross-coupling was employed to synthesize 2-arylpyrroles via a flow process. This reaction features palladium as the only metal catalyst and uses easily accessible starting materials. The reaction temperature, the residence time, and the quantity of different reactants were investigated to achieve optimal reaction conditions. A variety of N-alkylated and N-arylated 2-arylpyrroles were produced in good to excellent yields. A N-methyl-2-arylpyrrole derivative was produced in 220 min on a 3 g scale in 84% yield. The flow set-up presented in this work is featuring a fixed bed reactor to load the insoluble Cs2CO3 necessary for the decarboxylative cross-coupling to occur, it also comprises a sample loop, and a stainless-steel reactor. This study demonstrated the excellent potential of utilizing a flow process for the synthesis of 2-arylpyrroles derivatives.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P (2015) RSC Adv 5:15233

    Article  CAS  Google Scholar 

  2. Gholap SS (2016) Eur J Med Chem 110:13

    Article  CAS  PubMed  Google Scholar 

  3. Ragno R, Marshall GR, Santo R, Di; Costi R, Farmaceutici S, Applicata M (2000) Bioorg Med Chem 8:1423

    Article  CAS  PubMed  Google Scholar 

  4. Fatahala SS, Hasabelnaby S, Goudah A, Mahmoud GI, Abd-El Hameed RH, Muñoz-Torrero D (2017) Molecules 22:1

    Google Scholar 

  5. Nakazaki J, Chung I, Matsushita MM, Sugawara T, Watanabe R, Izuoka A, Kawada Y (2003) J Mater Chem 13:1011

    Article  CAS  Google Scholar 

  6. Young IS, Thornton D, Thompson A (2010) Nat Prod Rep 27:1801

    Article  CAS  PubMed  Google Scholar 

  7. Singh N, Singh S, Kohli S, Singh A, Asiki H, Rathee G, Chandra R, Anderson EA (2021) Org Chem Front 8:5550

    Article  CAS  Google Scholar 

  8. Fürstner A (2003) Angew Chemie Int Ed 42:3582

    Article  Google Scholar 

  9. Hantzsch A (1890) Ber Dtsch Chem Ges 23:1474

    Article  Google Scholar 

  10. Paal C (1885) Ber Dtsch Chem Ges 18:367

    Article  Google Scholar 

  11. Knorr L (1884) Ber Dtsch Chem Ges 17:1635

    Article  Google Scholar 

  12. Kaur R, Rani V, Abbot V, Kapoor Y, Konar D, Kumar K (2017) J Pharm Chem Chem Sci 1:17

    Google Scholar 

  13. Ferreira VF, Souza MCBV, CunhaPereira ACLOR, Ferreira MLG (2001) Org Prep Proced Int 33:411

    Article  CAS  Google Scholar 

  14. Estévez V, Villacampa M, Carlos, Menéndez (2014) J Chem Soc Rev 43:4633

    Article  Google Scholar 

  15. Philkhana SC, Badmus FO, Dos Reis IC, Kartika R (2021) Synth 53:1531

    Article  CAS  Google Scholar 

  16. Billingsley KL, Anderson KW, Buchwald SL (2006) Angew Chemie - Int Ed 45:3484

    Article  CAS  Google Scholar 

  17. Beaumard F, Dauban P, Dodd RH (2010) Synthesis 23:4033

    Google Scholar 

  18. Dowlut M, Mallik D, Organ MG (2010) Chem - A Eur J 16:4279

    Article  CAS  Google Scholar 

  19. Aleskovic M, Basaric N, Mlinaric-Majerski K (2011) J Heterocycl Chem 48:1329

    Article  CAS  Google Scholar 

  20. Johnson CN, Stemp G, Anand N, Stephen SC, Gallagher T (1998) Synlett 9:1025

    Article  Google Scholar 

  21. Beromeo C, Bera JK, Doucet H (2012) Tetrahedron Lett 53:509

    Article  Google Scholar 

  22. Sun G, Ren S, Zhu X, Huang M, Wan Y (2016) Org Lett 18:544

    Article  CAS  PubMed  Google Scholar 

  23. Marzo L, Ghosh I, Esteban F, Ko B (2016) ACS Catal 6:6780

    Article  CAS  Google Scholar 

  24. Roger J, Doucet H (2009) Adv Synth Catal 351:1977

    Article  CAS  Google Scholar 

  25. Vakuliuk O, Koszarna B, Gryko DT (2011) Adv Synth Catal 353:925

    Article  CAS  Google Scholar 

  26. Obst M, Shaikh RS, König B (2017) React Chem Eng 2:472

    Article  CAS  Google Scholar 

  27. Zhao L, Bruneau C, Doucet H (2013) ChemCatChem 5:255

    Article  CAS  Google Scholar 

  28. Arylation D, Vakuliuk M, Koszarna B, Gryko T (2011) Synthesis 17:2833

    Google Scholar 

  29. Forgione P, Brochu M-C, St-Onge M, Thesen KH, Bailey MD, Bilodeau F (2006) J Am Chem Soc 128:11350

    Article  CAS  PubMed  Google Scholar 

  30. Gooßen LJ, Deng G, Levy LM (2006) Science 313:662

    Article  PubMed  Google Scholar 

  31. Gooßen LJ, Rodríguez N, Gooßen K (2008) Angew Chemie Int Ed 47:3100

    Article  Google Scholar 

  32. Bilodeau F, Brochu MC, Guimond N, Thesen KH, Forgione P (2010) J Org Chem 75:1550

    Article  CAS  PubMed  Google Scholar 

  33. Rodríguez N, Gooßen LJ (2011) Chem Soc Rev 40:5030

    Article  PubMed  Google Scholar 

  34. Mehta VP, Van der Eycken EV (2011) Chem Soc Rev 40:4925

    Article  CAS  PubMed  Google Scholar 

  35. Glasnov TN, Kappe CO (2011) Chem - A Eur J 17:11956

    Article  CAS  Google Scholar 

  36. Damm M, Glasnov TN, Kappe CO (2010) Org Process Res Dev 14:215

    Article  CAS  Google Scholar 

  37. Schröter S, Bach T (2005) Synlett 1957

  38. Dudley GB, Stiegman AE (2018) Chem Rec 18:381

    Article  CAS  PubMed  Google Scholar 

  39. Razzaq T, Kappe CO (2010) Chem - An Asian J 5:1274

    CAS  Google Scholar 

  40. McQuade DT, Seeberger PH (2013) J Org Chem 78:6384

    Article  CAS  PubMed  Google Scholar 

  41. Lasso JD, Szavay P, Covone J, Forgione P, Chaco F (2021) J Org Chem 86:515

    Article  PubMed  Google Scholar 

  42. Messina C, Ottenwaelder X, Forgione P (2021) Org Lett 23:7348

    Article  CAS  PubMed  Google Scholar 

  43. Liu JT, Hase H, Taylor S, Salzmann I, Forgione P (2020) Angew Chem Int Ed 6:7146

    Article  Google Scholar 

  44. Messina C, Douglas LZ, Liu JT, Forgione P (2020) Eur J Org Chem 5182

  45. Chacon-Huete F, Mangel D, Ali M, Sudano A, Forgione P (2017) ACS Sustain Chem Eng 5:7071

    Article  CAS  Google Scholar 

  46. Noël T, Buchwald SL (2011) Chem Soc Rev 40:5010

    Article  PubMed  Google Scholar 

  47. Rudzinski DM, Leadbeater NE (2013) Green Process Synth 2:323

    CAS  Google Scholar 

  48. Therkelsen M, Rasmussen MT, Lindhardt AT (2015) Chem Commun 51:9651

    Article  CAS  Google Scholar 

  49. Hsieh H-W, Coley CW, Jensen LM, Robinson BKF (2018) R I Org Process Res Dev 22:542

    Article  CAS  Google Scholar 

  50. Lange PP, Gooßen LJ, Podmore P, Underwood T, Sciammetta N (2011) Chem Commun 47:3628

    Article  CAS  Google Scholar 

  51. Lee HJ, Park K, Bae G, Choe J, Song KH, Lee S (2011) Tetrahedron Lett 52:5064

    Article  CAS  Google Scholar 

  52. Menggen Q, Wu Y, Bao Y (2018) Chin J Org Chem 38:902

    Article  CAS  Google Scholar 

  53. Al-Kayiem HH, Huong TM, Khan JA (2016) ARPN J Eng Appl Sci 11:9908

    CAS  Google Scholar 

  54. Plutschack MB, Gilmore K, Seeberger PH (2017) Chem Rev 117:11796

    Article  CAS  PubMed  Google Scholar 

  55. Nemec D, Levec J (2005) Chem Eng Sci 60:6947

    Article  CAS  Google Scholar 

  56. Antilla JC, Baskin JM, Barder TE, Buchwald SL (2004) J Org Chem 69:5578

    Article  CAS  PubMed  Google Scholar 

  57. Alami M, Amatore C, Bensalem S, Choukchou-Brahim A, Jutand A (2001) Eur J Inorg Chem 2675

Download references

Acknowledgements

We are grateful for the resources provided by the Natural Sciences and Engineering Research Council (NSERC), the CREATE Training Program in Continuous Flow Science at Université de Montréal, and Le Fonds de Recherche du Québec, Nature et Technologies (FQRNT). Additional support was kindly provided by the Québec-funded Centre for Green Chemistry and Catalysis (CGCC). Special thanks to Cynthia Messina for her invaluable suggestions, Vanessa Kairouz and Dr Shawn Collins for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pat Forgione.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

- Pyrrole carboxylic acids and aryl bromides as coupling partners.

- Palladium-catalyzed cross-coupling in a flow reactor using a fixed-bed reactor.

- Large-scale cross-coupling reaction.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 24.7 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buonomano, C., Holtz-Mulholland, M., Sullivan, S. et al. Development of a palladium-catalyzed decarboxylative arene cross-coupling of pyrrole derivatives in a flow reactor. J Flow Chem 12, 275–283 (2022). https://doi.org/10.1007/s41981-022-00222-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-022-00222-4

Keywords

Navigation