Skip to main content

Advertisement

Log in

Kinetics determination of fast exothermic reactions with infrared thermography in a microreactor

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

In this paper, a microsystem integrated with infrared thermography is developed to measure the kinetics of fast exothermic reactions. The hydrolysis of ethyl acetate is chosen as the model reaction to verify the technique. The activation energy of this reaction is successfully obtained, which agrees well with the literature value. Except for the general method of collecting data from several typical points of the infrared radiation (IR) picture, a strategy called image analysis is applied to obtain the temperature profiles along the reactor by collecting data from the whole IR picture. With the image analysis, this system can generate time-series kinetic data in a single experiment, which is usually challenging for a continuous flow system. The reaction enthalpy of classic neutralization reaction and kinetic parameter of hydrolysis are determined again using the image analysis, showing fewer deviations from literature values. The image analysis technique could provide much more reliable and accurate results with higher efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang J, Wang K, Lin X, Lu Y, Luo G (2014) Intensification of fast exothermic reaction by gas agitation in a microchemical system. AICHE J 60(7):2724–2730

    Article  CAS  Google Scholar 

  2. Gemoets HP, Su Y, Shang M, Hessel V, Luque R, Noel T (2016) Liquid phase oxidation chemistry in continuous-flow microreactors. Chem Soc Rev 45(1):83–117. https://doi.org/10.1039/c5cs00447k

    Article  CAS  PubMed  Google Scholar 

  3. Zhou F, Zhang B, Yao C, Zhu K, Yang M, Chen G (2016) Cyclization of pseudoionone catalyzed by sulfuric acid in a microreactor. Chem Eng Technol 39(5):849–856. https://doi.org/10.1002/ceat.201500670

    Article  CAS  Google Scholar 

  4. Knapkiewicz P, Skowerski K, Jaskólska DE, Barbasiewicz M, Olszewski TK (2012) Nitration under continuous flow conditions: convenient synthesis of 2-isopropoxy-5-nitrobenzaldehyde, an important building block in the preparation of nitro-substituted Hoveyda–Grubbs metathesis catalyst. Org Process Res Dev 16(8):1430–1435. https://doi.org/10.1021/op300116j

    Article  CAS  Google Scholar 

  5. Zhang C, Zhang J, Luo G (2016) Kinetic study and intensification of acetyl guaiacol nitration with nitric acid—acetic acid system in a microreactor. J Flow Chem 6(4):309-314. https://doi.org/10.1556/1846.2016.00011

    Article  CAS  Google Scholar 

  6. Wang K, Lu YC, Xia Y, Shao HW, Luo GS (2011) Kinetics research on fast exothermic reaction between cyclohexanecarboxylic acid and oleum in microreactor. Chem Eng J 169(1–3):290–298. https://doi.org/10.1016/j.cej.2011.02.072

    Article  CAS  Google Scholar 

  7. Schneider MA, Stoessel F (2005) Determination of the kinetic parameters of fast exothermal reactions using a novel microreactor-based calorimeter. Chem Eng J 115(1–2):73–83. https://doi.org/10.1016/j.cej.2005.09.019

    Article  CAS  Google Scholar 

  8. Zogg A, Stoessel F, Fischer U, Hungerbühler K (2004) Isothermal reaction calorimetry as a tool for kinetic analysis. Thermochim Acta 419(1–2):1–17. https://doi.org/10.1016/j.tca.2004.01.015

    Article  CAS  Google Scholar 

  9. Glotz G, Knoechel DJ, Podmore P, Gruber-Woelfler H, Kappe CO (2017) Reaction calorimetry in microreactor environments—measuring heat of reaction by isothermal heat flux calorimetry. Org Process Res Dev 21(5):763–770. https://doi.org/10.1021/acs.oprd.7b00092

    Article  CAS  Google Scholar 

  10. Andreozzi R, Caprio V, Di Somma I, Sanchirico R (2006) Kinetic and safety assessment for salicylic acid nitration by nitric acid/acetic acid system. J Hazard Mater 134(1–3):1–7. https://doi.org/10.1016/j.jhazmat.2005.10.037

    Article  CAS  PubMed  Google Scholar 

  11. McMullen JP, Jensen KF (2011) Rapid determination of reaction kinetics with an automated microfluidic system. Org Process Res Dev 15(2):398–407. https://doi.org/10.1021/op100300p

    Article  CAS  Google Scholar 

  12. Reichmann F, Millhoff S, Jirmann Y, Kockmann N (2017) Reaction calorimetry for exothermic reactions in plate-type microreactors using seebeck elements. Chem Eng Technol 40(11):2144–2154. https://doi.org/10.1002/ceat.201700419

    Article  CAS  Google Scholar 

  13. Gomez MV, Rodriguez AM, de la Hoz A, Jimenez-Marquez F, Fratila RM, Barneveld PA, Velders AH (2015) Determination of kinetic parameters within a single nonisothermal on-flow experiment by nanoliter NMR spectroscopy. Anal Chem 87(20):10547–10555. https://doi.org/10.1021/acs.analchem.5b02811

    Article  CAS  PubMed  Google Scholar 

  14. Sans V, Cronin L (2016) Towards dial-a-molecule by integrating continuous flow, analytics and self-optimisation. Chem Soc Rev 45(8):2032–2043. https://doi.org/10.1039/c5cs00793c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Halder R, Lawal A, Damavarapu R (2007) Nitration of toluene in a microreactor. Catal Today 125(1–2):74–80. https://doi.org/10.1016/j.cattod.2007.04.002

    Article  CAS  Google Scholar 

  16. Zhang J, Burklé-Vitzthum V, Marquaire PM (2012) NO2-promoted oxidation of methane to formaldehyde at very short residence time – part II: kinetic modeling. Chem Eng J 197:123–134. https://doi.org/10.1016/j.cej.2012.05.013

    Article  CAS  Google Scholar 

  17. Keybl J, Jensen KF (2011) Microreactor system for high-pressure continuous flow homogeneous catalysis measurements. Ind Eng Chem Res 50(19):11013–11022. https://doi.org/10.1021/ie200936b

    Article  CAS  Google Scholar 

  18. Buffone C, Sefiane K (2004) IR measurements of interfacial temperature during phase change in a confined environment. Exp Thermal Fluid Sci 29(1):65–74. https://doi.org/10.1016/j.expthermflusci.2004.02.004

    Article  CAS  Google Scholar 

  19. Hetsroni G, Mosyak A, Pogrebnyak E, Rozenblit R (2011) Infrared temperature measurements in micro-channels and micro-fluid systems. Int J Therm Sci 50(6):853–868. https://doi.org/10.1016/j.ijthermalsci.2011.01.006

    Article  Google Scholar 

  20. Ravey C, Pradere C, Regnier N, Batsale J-C (2012) New temperature field processing from IR camera for velocity, thermal diffusivity and calorimetric non-intrusive measurements in microfluidics systems. Quant InfraRed Thermogr J 9(1):79–98. https://doi.org/10.1080/17686733.2012.682878

    Article  Google Scholar 

  21. Haber J, Kashid MN, Borhani N, Thome J, Krtschil U, Renken A, Kiwi-Minsker L (2013) Infrared imaging of temperature profiles in microreactors for fast and exothermic reactions. Chem Eng J 214:97–105. https://doi.org/10.1016/j.cej.2012.10.021

    Article  CAS  Google Scholar 

  22. Ravey C, Pradere C, Regnier N, Batsale JC (2015) Study of phase change and Supercooling in micro-channels by infrared thermography. Exp Heat Transfer 29(2):266–283. https://doi.org/10.1080/08916152.2014.973980

    Article  Google Scholar 

  23. Zhang J, Zhang C, Liu G, Luo G (2016) Measuring enthalpy of fast exothermal reaction with infrared thermography in a microreactor. Chem Eng J 295:384–390

    Article  CAS  Google Scholar 

  24. Ashauer M, Ende J, Glosch H, Haffner H, Hiltmann K (1997) Thermal characterization of microsystems by means of high-resolution thermography. Microelectron J 28(3):327–335. https://doi.org/10.1016/s0026-2692(96)00036-5

    Article  Google Scholar 

  25. Zhang J, Wang K, Lu Y, Luo G (2010) Characterization and modeling of micromixing performance in micropore dispersion reactors. Chem Eng Process Process Intensif 49(7):740–747

    Article  CAS  Google Scholar 

  26. Johnson RE, Biltonen RL (1975) Determination of reaction rate parameters by flow microcalorimetry. J Am Chem Soc 97(9):2349–2355. https://doi.org/10.1021/ja00842a007

    Article  CAS  Google Scholar 

  27. Roux A, Perron G, Picker P, Desnoyers JE (1980) Enthalpies of reaction and reaction rates by flow microcalorimetry: Ester hydrolysis in basic medium. J Solut Chem 9(1):59–73. https://doi.org/10.1007/bf00650137

    Article  CAS  Google Scholar 

  28. Bamford CH, Tipper CFH (1972) Comprehensive chemical kinetics. Elsevier, Amsterdam

    Google Scholar 

  29. Reichmann F, Vennemann K, Frede TA, Kockmann N (2019) Mixing time scale determination in microchannels using reaction calorimetry. Chemie Ingenieur Technik. https://doi.org/10.1002/cite.201800169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the supports of the National Natural Science Foundation of China (21991103, U1463208), Tsinghua University Initiative Scientific Research Program (2019Z08QCX02) and the State Key Laboratory of Chemical Engineering (SKL-ChE-17T01) on this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jisong Zhang or Guangsheng Luo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 882 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, J. & Luo, G. Kinetics determination of fast exothermic reactions with infrared thermography in a microreactor. J Flow Chem 10, 219–226 (2020). https://doi.org/10.1007/s41981-019-00071-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-019-00071-8

Keywords

Navigation