Skip to main content
Log in

Iterative Methods for Sparse Symmetric Multilinear Systems

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

In this research, we extend three attractive iterative methods—conjugate gradient, conjugate residual, and minimal residual—to solve large sparse symmetric multilinear system \(\mathcal {A}\textbf{x}^{m-1}=\textbf{b}\). We prove that the developed iterative methods converge under some appropriate conditions. As an application, we applied the proposed methods for solving the Klein–Gordon equation with Dirichlet boundary condition. Also, comparing these iterative methods to some new preconditioned splitting methods shows that, applying new methods for solving symmetric tensor equation \(\mathcal {A}\textbf{x}^{m-1}=\textbf{b}\), in which the coefficient tensor is an \(\mathcal {M}\)-tensor, are more efficient. Numerical results demonstrate that our methods are feasible and effective for solving this type of tensor equations. Finally, some concluding remarks are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bader, B.W., Kolda, T.G.: Matlab tensor toolbox, version 2.6, Available online at https://www.tensortoolbox.org (2010)

  2. Bai, X., He, H., Ling, C., Zhou, G.: A nonnegativity preserving algorithm for multilinear systems with nonsingular \({\cal{M} }\)-tensors. Numer. Algorithms (2021). https://doi.org/10.1007/s11075-020-01008-2

    Article  MathSciNet  Google Scholar 

  3. Beik, F.P.A., Najafi-Kalyani, M., Jbilou, K.: Preconditioned iterative methods for multi-linear systems based on the majorization matrix. Linear Multilinear Algebra 70(20), 5827–5846 (2022)

    Article  MathSciNet  Google Scholar 

  4. Beik, F.P.A., Najafi-Kalyani, M., Mollahasani, S.: On the Solvability of Tensor Absolute Value Equations. Bull. Malays. Math. Sci. Soc. 45, 3157–3176 (2022)

    Article  MathSciNet  Google Scholar 

  5. Bozorgmanesh, H., Hajarian, M.: Solving tensor E-eigenvalue problem faster. Appl. Math. Lett. (2019). https://doi.org/10.1016/j.aml.2019.106020

    Article  Google Scholar 

  6. Cui, L.B., Chen, C., Li, W., Ng, M.: An eigenvalue problem for even order tensors with its applications. Linear Multilinear Algebra 64, 602–621 (2016)

    Article  MathSciNet  Google Scholar 

  7. Cui, L.B., Li, M.H., Song, Y.: Preconditioned tensor splitting iterations method for solving multi-linear systems. Appl. Math. Lett. 96, 89–94 (2019)

    Article  MathSciNet  Google Scholar 

  8. Cui, L., Song, Y.: On the uniqueness of the positive Z-eigenvector for nonnegative tensor. J. Comput. Appl. Math. 352, 72–78 (2019)

    Article  MathSciNet  Google Scholar 

  9. Ding, W., Wei, Y.: Solving multi-linear system with \({{\cal{M} }}\)-tensors. J. Sci. Comput. 68, 689–715 (2016)

    Article  MathSciNet  Google Scholar 

  10. Dehdezi, E.K.: Iterative methods for solving Sylvester transpose tensor equation \({{\cal{A} }}\star _N\cal{X} \star _M{\cal{B} }+{{{\cal{C} }}}\star _M\cal{X} ^{{ T}}\star _N{{\cal{D} }} ={\cal{E} }\). Oper. Res. Forum 2(4), 1–21 (2021)

    Article  Google Scholar 

  11. Dehdezi, E.K.: HOBi-CGSTAB and HOBi-CRSTAB methods for solving tensor equations. Afrika Mat. (2023). https://doi.org/10.1007/s13370-023-01155-4

    Article  MathSciNet  Google Scholar 

  12. Dehdezi, E.K., Karimi, S.: Extended conjugate gradient squared and conjugate residual squared methods for solving the generalized coupled Sylvester tensor equations. Trans. Inst. Meas. Control 43(3), 519–527 (2021)

    Article  Google Scholar 

  13. Dehdezi, E.K., Karimi, S.: A fast and efficient Newton-Shultz-type iterative method for computing inverse and Moore-Penrose inverse of tensors. J. Math. Model. 9(4), 645–664 (2021)

    MathSciNet  Google Scholar 

  14. Dehdezi, E.K., Karimi, S.: A gradient based iterative method and associated preconditioning technique for solving the large multilinear systems. Calcolo 58(4), 1–19 (2021)

    MathSciNet  Google Scholar 

  15. Dehdezi, E.K., Karimi, S.: A rapid and powerful iterative method for computing inverses of sparse tensors with applications. Appl. Math. Comput. (2021). https://doi.org/10.1016/j.amc.2021.126720

    Article  Google Scholar 

  16. Dehdezi, E.K., Karimi, S.: GIBS: A general and efficient iterative method for computing the approximate inverse and Moore-Penrose inverse of sparse matrices based on the Shultz iterative method with applications. Linear Multilinear Algebra (2022). https://doi.org/10.1080/03081087.2022.2088673

    Article  Google Scholar 

  17. Dehdezi, E.K., Karimi, S.: On finding strong approximate inverses for tensors. Numer. Linear Algebra Appl. 30, e2460 (2022). https://doi.org/10.1002/nla.2460

    Article  MathSciNet  Google Scholar 

  18. Han, L.: A homotopy method for solving multilinear systems with \({{\cal{M} }}\)-tensors. Appl. Math. Lett. 69, 49–54 (2017)

    Article  MathSciNet  Google Scholar 

  19. He, H., Ling, C., Qi, L., Zhou, G.: A globally and quadratically convergent algorithm for solving multilinear systems with \({{\cal{M} }}\)-tensors. J. Sci. Comput. 76(3), 1718–1741 (2018)

    Article  MathSciNet  Google Scholar 

  20. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear system. J. Res. Natl. Bureau Stand. 49(6), 409–436 (1952)

    Article  MathSciNet  Google Scholar 

  21. Karimi, S., Dehdezi, E.K.: Tensor splitting preconditioners for multilinear systems. Res. Square (2022). https://doi.org/10.21203/rs.3.rs-2263555/v1

    Article  Google Scholar 

  22. Li, D., Guan, H.B., Wang, X.Z.: Finding a nonnegative solution to an \({\cal{M}}\)-tensor equation (2018). arXiv:1811.11343

  23. Li, Z., Dai, Y., Gao, H.: Alternating projection method for a class of tensor equations. J. Comput. Appl. Math. 346, 490–504 (2019)

    Article  MathSciNet  Google Scholar 

  24. Li, W., Liu, D., Vong, S.W.: Comparison results for splitting iterations for solving multi-linear systems. Appl. Numer. Math. 134, 105–121 (2018)

    Article  MathSciNet  Google Scholar 

  25. Li, T., Wang, Q.W., Zhang, X.F.: Gradient based iterative methods for solving symmetric tensor equations. Numer. Linear Algebra Appl. 29, e2414 (2021). https://doi.org/10.1002/nla.2414

    Article  MathSciNet  Google Scholar 

  26. Liang, M., Zheng, B., Zhao, R.: Alternating iterative methods for solving tensor equations with applications. Numer. Algorithms 80(4), 1437–1465 (2019)

    Article  MathSciNet  Google Scholar 

  27. Liu, D., Li, W., Vong, S.W.: The tensor splitting with application to solve multilinear systems. J. Comput. Appl. Math. 330, 75–94 (2018)

    Article  MathSciNet  Google Scholar 

  28. Liu, D., Li, W., Vong, S.W.: A new preconditioned SOR method for solving multilinear systems with an \({\cal{M} }\)-tensors. Calcolo. (2020). https://doi.org/10.1007/s10092-020-00364-8

    Article  Google Scholar 

  29. Lv, C.Q., Ma, C.F.: A Levenberg-Marquardt method for solving semi-symmetric tensor equations. J. Comput. Appl. Math. 332, 13–25 (2018)

    Article  MathSciNet  Google Scholar 

  30. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)

    Article  MathSciNet  Google Scholar 

  31. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia, PA (2003)

    Book  Google Scholar 

  32. Wang, X., Che, M., Wei, Y.: Neural networks based approach solving multi-linear systems with \({{\cal{M} }}\)-tensors. Neurocomputing 351, 33–42 (2019)

    Article  Google Scholar 

  33. Xie, Z., Jin, X.Q., Wei, Y.: Tensor methods for solving symmetric \({{\cal{M} }}\)-tensor systems. J. Sci. Comput. 74(1), 412–425 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eisa Khosravi Dehdezi.

Additional information

Communicated by Davoud Mirzaei.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehdezi, E.K. Iterative Methods for Sparse Symmetric Multilinear Systems. Bull. Iran. Math. Soc. 50, 40 (2024). https://doi.org/10.1007/s41980-024-00875-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41980-024-00875-y

Keywords

Mathematics Subject Classification

Navigation