Skip to main content
Log in

Fiedler Linearizations of Rectangular Rational Matrix Functions

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

Linearization is a standard approach in the computation of eigenvalues, eigenvectors and invariant subspaces of matrix polynomials and rational matrix valued functions. An important source of linearizations are the so called Fiedler linearizations, which are generalizations of the classical companion forms. In this paper the concept of Fiedler linearization is extended from square regular to rectangular rational matrix valued functions. The approach is applied to Rosenbrock functions arising in mathematical system theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3

Similar content being viewed by others

References

  1. Ahmad, S.S., Mehrmann, V.: Backward errors and pseudospectra for structured nonlinear eigenvalue problems. OaM, 10:539–556, (09 2016)

  2. Alam, R., Behera, N.: Linearizations for rational matrix functions and rosenbrock system polynomials. SIAM J. Matrix Anal. Appl. 37, 354–380 (2016)

    Article  MathSciNet  Google Scholar 

  3. Amparan, A., Dopico, F.M., Marcaida, S., Zaballa, I.: Strong linearizations of rational matrices. SIAM J. Matrix Anal. Appl. 39(4), 1670–1700 (2018)

    Article  MathSciNet  Google Scholar 

  4. Amparan, A., Dopico, F.M., Marcaida, S., Zaballa, I.: On minimal bases and indices of rational matrices and their linearizations. Linear Algebra Appl. 623, 14–67 (2021)

    Article  MathSciNet  Google Scholar 

  5. Antoniou, E.N., Vologiannidis, S.: A new family of companion forms of polynomial matrices. Electron. J. Linear Algebra 11, 78–87 (2004)

    Article  MathSciNet  Google Scholar 

  6. Antoulas, A.C.: Approximation of large-scale dynamical systems, volume 6 of Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (2005)

  7. Antoulas, A.C., Beattie, C.A., Gugercin, S.: Interpolatory model reduction of large-scale dynamical systems. In J. Mohammadpour and K. Grigoriadis, editors, Efficient Modeling and Control of Large-Scale Systems. Springer-Verlag, (2010)

  8. Baur, U., Benner, P., Feng, L.: Model order reduction for linear and nonlinear systems: a system-theoretic perspective. Arch. Comput. Meth. Enginrg 21(4), 331–358 (2014)

    Article  MathSciNet  Google Scholar 

  9. Behera, N.: Fiedler Linearizations for LTI State-Space Systems and for Rational Eigenvalue Problems. PhD thesis, Indian Institute of Technology Guwahati, (2014)

  10. Behera, N., Bist, A.: Fiedler linearizations of multivariable statespace systems and its associated system matrix. arXiv:2207.01324, (2022)

  11. Betcke, T., Higham, N.J., Mehrmann, V., Schröder, C., Tisseur, F.: Nlevp: A collection of nonlinear eigenvalue problems. ACM Trans. Math. Softw., 39:7:1–7:28, (2013)

  12. Binder, A., Mehrmann, V., Miedlar, A., Schulze, P.: A Matlab toolbox for the regularization of descriptor systems arising from generalized realization procedures. Preprint 24–2015, TU Berlin, Institut für Mathematik, (2015)

  13. Bueno, M.I., De Terán, F., Dopico, F.M.: Recovery of eigenvectors and minimal bases of matrix polynomials from generalized Fiedler linearizations. SIAM J. Matrix Anal. Appl. 32(2), 463–483 (2011)

    Article  MathSciNet  Google Scholar 

  14. Byers, R., Mehrmann, V., Xu, H.: Trimmed linearizations for structured matrix polynomials. Linear Algebra Appl. 429, 2373–2400 (2008)

    Article  MathSciNet  Google Scholar 

  15. Campbell, S.L., Kunkel, P., Mehrmann, V.: Regularization of linear and nonlinear descriptor systems. In L. T. Biegler, S. L. Campbell, and V. Mehrmann, editors, Control and Optimization with Differential-Algebraic Constraints, number 23 in Advances in Design and Control, pages 17–36, (2012)

  16. Conca, C., Planchard, J., Vanninathan, M.: Existence and location of eigenvalues for fluid-solid structures. Comput. Methods Appl. Mech. Engrg. 77(3), 253–291 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  17. Das, R.K., Alam, R.: Affine spaces of strong linearizations for rational matrices and the recovery of eigenvectors and minimal bases. Linear Algebra Appl. 569, 335–368 (2019)

    Article  MathSciNet  Google Scholar 

  18. De Terán, F., Dopico, F.M., Mackey, D.S.: Fiedler companion linearizations for rectangular matrix polynomials. Linear Algebra Appl. 437, 957–991 (2012)

    Article  MathSciNet  Google Scholar 

  19. De Terán, F., Dopico, F.M., Pérez, J.: Condition numbers for inversion of Fiedler companion matrices. Linear Algebra Appl. 439(4), 944–981 (2013)

    Article  MathSciNet  Google Scholar 

  20. De Terán, F., Dopico, F.M., Mackey, D.S.: Fiedler companion linearizations and the recovery of minimal indices. SIAM J. Matrix Anal. Appl., 31(4):2181–2204, (2009/10)

  21. Demmel, J.W., Kågström, B.: Stably computing the Kronecker structure and reducing subspaces of singular pencils \(A-\lambda B\) for uncertain data. In: Cullum, J., Willoughby, R.A. (eds.) Large Scale Eigenvalue Problems, pp. 283–323. Elsevier, North-Holland (1986)

    Google Scholar 

  22. Dopico, F.M., Marcaida, S., Quintana, M.C., Van Dooren, P.: Local linearizations of rational matrices with application to rational approximations of nonlinear eigenvalue problems. Linear Algebra Appl. 604, 441–475 (2020)

    Article  MathSciNet  Google Scholar 

  23. Quintana, M.C., Dopico, F.M., Marcaida, S., Dooren, P.V.: Linearizations of matrix polynomials viewed as rosenbrock’s system matrices. arXiv:2211.09056, preprint, (2022)

  24. Quintana, M.C., Dopico, F.M., Marcaida, S., Dooren, P.V.: Block full rank linearizations of rational matrices. Linear Multilinear Algebra 71(3), 391–421 (2023)

    Article  MathSciNet  Google Scholar 

  25. Gohberg, I., Lancaster, P., Rodman, L.: Matrix Polynomials. Academic Press, New York (1982)

    Google Scholar 

  26. Grammont, L., Higham, N.J., Tisseur, F.: A framework for analyzing nonlinear eigenproblems and parametrized linear systems. Linear Algebra Appl. 435(3), 623–640 (2011)

    Article  MathSciNet  Google Scholar 

  27. Gugercin, S., Antoulas, A.C.: A survey of model reduction by balanced truncation and some new results. Int. J. of Control 77, 748–766 (2004)

    Article  MathSciNet  Google Scholar 

  28. Higham, N.J., Mackey, D.S., Mackey, N., Tisseur, F.: Symmetric linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 29(1), 143–159 (2006)

    Article  MathSciNet  Google Scholar 

  29. Higham, N.J., Li, R.-C., Tisseur, F.: Backward error of polynomial eigenproblems solved by linearization. SIAM J. Matrix Anal. Appl. 29(4), 1218–1241 (2007)

    Article  MathSciNet  Google Scholar 

  30. Higham, N.J., Mackey, D.S., Tisseur, F.: The conditioning of linearizations of matrix polynomials. SIAM J. Matrix Anal. Appl. 28, 1005–1028 (2006)

    Article  MathSciNet  Google Scholar 

  31. Higham, N.J., Mackey, D.S., Tisseur, F.: Definite matrix polynomials and their linearizations by definite pencils. SIAM J. Matrix Anal. Appl. 31, 478–502 (2009)

    Article  MathSciNet  Google Scholar 

  32. Hilliges, A., Mehl, C., Mehrmann, V.: On the solution of palindromic eigenvalue problems. In Proceedings of the 4th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS). Jyväskylä, Finland, (2004). CD-ROM

  33. Hwang, T.-M., Lin, W.-W., Wang, W.-C., Wang, W.: Numerical simulation of three dimensional pyramid quantum dot. J. Comput. Phys. 196(1), 208–232 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  34. Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. European Mathematical Society Publishing House, Analysis and Numerical Solution. Zürich (2006)

    Book  Google Scholar 

  35. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Structured polynomial eigenvalue problems: Good vibrations from good linearizations. SIAM J. Matrix Anal. Appl. 28(4), 1029–1051 (2006)

    Article  MathSciNet  Google Scholar 

  36. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Vector spaces of linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 28(4), 971–1004 (2006)

    Article  MathSciNet  Google Scholar 

  37. Mayo, A.J., Antoulas, A.C.: A framework for the solution of the generalized realization problem. Linear Algebra Appl. 425, 634–662 (2007)

    Article  MathSciNet  Google Scholar 

  38. Mehrmann, V., Schröder, C.: Nonlinear eigenvalue and frequency response problems in industrial practice. J. Math. Ind. 1, 18 (2011)

    MathSciNet  Google Scholar 

  39. Mehrmann, V., Voss, H.: Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM Mitteilungen, 27(2):121–152 (2005), 2004

  40. Pérez, J., Quintana, M.C.: Linearizations of rational matrices from general representations. Linear Algebra Appl. 647, 89–126 (2022)

    Article  MathSciNet  Google Scholar 

  41. Planchard, J.: Eigenfrequencies of a tube bundle placed in a confined fluid. Comput. Methods Appl. Mech. Engrg. 30(1), 75–93 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  42. Rosenbrock, H.H.: State Space and Multivariable Theory. Wiley, New York (1970)

    Google Scholar 

  43. Scholz, L.: A derivative array approach for linear second order differential-algebraic systems. Electron. J. Linear Algebra 22, 310–347 (2011)

    Article  MathSciNet  Google Scholar 

  44. Solov’ev, S.I.: Preconditioned iterative methods for a class of nonlinear eigenvalue problems. Linear Algebra Appl. 415(1), 210–229 (2006)

    Article  MathSciNet  Google Scholar 

  45. Stewart, G.W., Sun, J.-G.: Matrix Perturbation Theory. Academic Press, New York (1990)

    Google Scholar 

  46. Su, Y., Bai, Z.: Solving rational eigenvalue problems via linearization. SIAM J. Matrix Anal. Appl. 32(1), 201–216 (2011)

    Article  MathSciNet  CAS  Google Scholar 

  47. Tisseur, F.: Backward error and condition of polynomial eigenvalue problems. Linear Algebra Appl. 309, 339–361 (2000)

    Article  MathSciNet  Google Scholar 

  48. Vardulakis, A.I.G.: Linear Multivariable Control. Wiley, New York (1991)

    Google Scholar 

  49. Vologiannidis, S., Antoniou, E.N.: A permuted factors approach for the linearization of polynomial matrices. Math. Control Signals Systems 22(4), 317–342 (2011)

    Article  MathSciNet  Google Scholar 

  50. Voss, H.: A rational spectral problem in fluid-solid vibration. Electron. Trans. Numer. Anal., 16:93–105 (electronic), (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namita Behera.

Additional information

Communicated by Fatemeh Panjeh Ali Beik.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Namita Behera: Partially supported IMU-ESB program.

Namita Behera and Volker Mehrmann: Partially supported by the Einstein Stiftung Berlin through the Research Center Matheon Mathematics for key technologies in Berlin.

Appendix

Appendix

So far we have only considered the case that \(d_A\ge d_D\) in the polynomial degrees. For completeness in this appendix, we present the analogous results and algorithms for the case \(d_{A} < d_{D}\).

figure d

Based on the construction in Algorithm 4 we have the following.

Lemma 6.1

Let \(S(\lambda )\) be as in (1.5) with \(A(\lambda ) = \sum \nolimits _{i=0}^{d_A}\lambda ^{i}A_i\in \mathbb C[\lambda ]^{n\times n}\), \(D(\lambda ) = \sum \nolimits _{i=0}^{d_D}\lambda ^{i}D_{i}\in \mathbb C[\lambda ]^{p\times m}\) and suppose that \(d_A< d_D\). For a bijection \(\sigma \) Algorithm 4 constructs a sequence of matrices \(\{{\mathbb {W}}_0, {\mathbb {W}}_1, \ldots , {\mathbb {W}}_{d_{D}-2}\}, \) where each matrix \({\mathbb {W}}_i\) for \(i = 1, 2, \ldots , d_{D}-2\) is partitioned into blocks in such a way that the blocks of \({\mathbb {W}}_{i-1}\) are blocks of \({\mathbb {W}}_i. \)

Then

  1. (a)

    The size of \({\mathbb {W}}_i\) for \(i = 0:d_{A}-2\) is \(\left[ \left( n+n c(\sigma (0:i)) + n \mathfrak {i}(\sigma (0:i))\right) + \left( p+p c(\sigma (0:i)) + m \mathfrak {i}(\sigma (0:i))\right) \right] \times \left[ \left( n + n c(\sigma (0:i)) + n \mathfrak {i}(\sigma (0:i))\right) + \left( m + p c(\sigma (0:i)) + m \mathfrak {i}(\sigma (0:i))\right) \right] \) and for \(i = d_{A}-1: d_{D}-2\) is \(\left[ d_{A}n + \left( p+p c(\sigma (0:i)) + m \mathfrak {i}(\sigma (0:i))\right) \right] \times \left[ d_{A}n + \left( m + p c(\sigma (0:i)) \right. \right. \left. \left. + m \mathfrak {i}(\sigma (0:i))\right) \right] . \)

  2. (b)

    The (1, 1) diagonal block of \({\mathbb {W}}_{i}\) is \(-A_{i+1}\in {\mathbb {C}}^{n\times n}\) and the \((3+i,3+i)\) block of \({\mathbb {W}}_{i}\) is \(-D_{i+1}\in {\mathbb {C}}^{p\times m}\) for \(i=0:d_{A}-2\) and the (1, 1) block of \({\mathbb {W}}_{i}\) is \(-A_{d_{A}-1}\in {\mathbb {C}}^{n\times n}\) and the \((d_{A}+1,d_{A}+1)\) block of \({\mathbb {W}}_{i}\) is \(-D_{i+1}\in {\mathbb {C}}^{p\times m}\) for \(i=d_{A}-1:d_{D}-2\). The rest of the diagonal blocks of \({\mathbb {W}}_i\) are square zero matrices, and more precisely, for \(j = 0, 1, \ldots , i\) and \(i= 0, 1, \ldots d_{{A}}-2,\) \({\mathbb {W}}_i(i+2-j, i+2-j) = 0_n \) and for \(j = 0, 1, \ldots , i\) and \(i= 0, 1, \ldots d_{{A}}-2,\)

    $$\begin{aligned} {\mathbb {W}}_i(2i+4-j, 2i+4-j) = {\left\{ \begin{array}{ll} 0_p, &{} \text {if } \sigma \text { has a consecution at } j \\ 0_m, &{} \text {if } \sigma \text { has an inversion at } j \end{array}\right. }, \end{aligned}$$

    and for \(j=0, 1, \ldots , i\) and \(i=d_{A}-1:d_{D}-2\),

    $$\begin{aligned} {\mathbb {W}}_{i}(d_{A}+i+2-j,d_{A}+i+2-j)={\left\{ \begin{array}{ll} 0_p, \,\,\,\,\ {} &{}\text {if}\, \sigma \, \text {has a conseqution at}\, j \\ 0_m, &{}\text {if}\, \sigma \,\text {has an inversion at}\, j \end{array}\right. }. \end{aligned}$$
  3. (c)

    If \(\sigma \) has a consecution at i, then the size of the zero block in \(W_{21}\) block of \({\mathbb {W}}_i\) is \(0_{p \times n}\) and if \(\sigma \) has an inversion at i, then the size of the zero block in \(W_{12}\) block of \({\mathbb {W}}_i\) is \(0_{n \times m}\).

Proof

The proof is analogous to the proof of Lemma 3.4. \(\square \)

figure e
figure f

We have the following properties.

Lemma 6.2

Let \(S(\lambda )\) be as in (1.5) with \(A(\lambda ) = \sum \nolimits _{i=0}^{d_A}\lambda ^{i}A_i\in \mathbb C[\lambda ]^{n\times n}\), \(D(\lambda ) = \sum \nolimits _{i=0}^{d_D}\lambda ^{i}D_{i}\in \mathbb C[\lambda ]^{p\times m}\) and suppose that \(d_A< d_D\). Let \(\sigma : \{0, 1, \ldots , d_{D}-1\} \rightarrow \{1, 2, \ldots , d_{D}\}\) be a bijection and consider Algorithms 5 and  6. Let \(\{{\mathbb {N}}_0, {\mathbb {N}}_1, \ldots , {\mathbb {N}}_{d_{D}-2}\} \) and \(\{{\mathbb {H}}_0, {\mathbb {H}}_1, \ldots , {\mathbb {H}}_{d_{D}-2}\}\) be given by Algorithms 5 and  6, respectively. Consider the sequence of block partitioned matrices \(\{{\mathbb {W}}_i\}_{i=0}^{d_{D}-2}\) constructed by the Algorithm 4. Then we have the following.

  1. (a)

    For \(0\le i \le d_{D}-2\), and \(1 \le j\le i+2, \) the number of columns of \({\mathbb {N}}_i(:, j)\) is equal to the number of rows of \({\mathbb {W}}_i(j,:)\) so that the product \({\mathbb {N}}_i(:, j){\mathbb {W}}_i(j,:)\) is well defined.

  2. (b)

    For \(0\le i \le d_{D}-2\), and \(1 \le j\le i+2, \) the number of columns of \({\mathbb {W}}_i(:, j)\) is equal to the number of rows of \({\mathbb {H}}_i(j,:) \) so that the product \({\mathbb {W}}_i(:, j){\mathbb {H}}_i(j,:)\) is well defined.

  3. (c)

    For \(i= 0:d_{A}-2\), the size of \({\mathbb {N}}_i\) is \(\left[ \left( n + n c(\sigma (0:i)) + n \mathfrak {i}(\sigma (0:i)) \right) +\left( p + p c(\sigma (0:i)) + m \mathfrak {i}(\sigma (0:i))\right) \right] \times \left[ \left( n + n c(\sigma (0:i)) + n \mathfrak {i}(\sigma (0:i)) \right) +\left( p + p c(\sigma (0:i)) + m \mathfrak {i}(\sigma (0:i)) \right) \right] \) and for \(i= d_{A}-1: d_{D}-2\) the size of \({\mathbb {N}}_i\) is

    $$\begin{aligned}{} & {} \left[ \left( n d_{A}\right) + \left( p+p c(\sigma (0:i)) + m \mathfrak {i}(\sigma (0:i))\right) \right] \\{} & {} \quad \times \left[ \left( n d_{A}\right) + \left( p + p c(\sigma (0:i)) + m \mathfrak {i}(\sigma (0:i))\right) \right] . \end{aligned}$$
  4. (d)

    For \(i= 0:d_{A}-2\), the size of \({\mathbb {H}}_i\) is \(\left[ \left( n + n c(\sigma (0:i)) + n \mathfrak {i}(\sigma (0:i))\right) + \left( m + p c(\sigma (0:i)) + m \mathfrak {i}(\sigma (0:i))\right) \right] \times \left[ \left( n + n c(\sigma (0:i)) + n \mathfrak {i}(\sigma (0:i)) \right) + \left( m + p c(\sigma (0:i)) + m \mathfrak {i}(\sigma (0:i)) \right) \right] \) and for \(i= d_{A}-1: d_{D}-2\) the size of \({\mathbb {H}}_i\) is

    $$\begin{aligned}{} & {} \left[ \left( n d_{A}\right) + \left( m+p c(\sigma (0:i)) + m \mathfrak {i}(\sigma (0:i))\right) \right] \\{} & {} \quad \times \left[ \left( n d_{A}\right) + \left( m + p c(\sigma (0:i)) + m \mathfrak {i}(\sigma (0:i))\right) \right] . \end{aligned}$$
  5. (e)

    The matrix polynomials \({\mathbb {N}}_i\) and \({\mathbb {H}}_i\) are unimodular with \(\det ({\mathbb {N}}_i) = \pm 1\) and \(\det ({\mathbb {H}}_i) = \pm 1\).

Lemma 6.3

Let \(S(\lambda )\) be an \((n+p) \times (n+m)\) RSMP as in (1.5) with \(A(\lambda ) = \sum \nolimits _{i=0}^{d_A}\lambda ^{i}A_i\in \mathbb {C}[\lambda ]^{n\times n}\) and \(D(\lambda ) = \sum \nolimits _{i=0}^{d_D}\lambda ^{i}D_{i} \in \mathbb {C}[\lambda ]^{p\times m}\) and \(d_A < d_D\). Let \(\sigma : \{0, 1, \ldots , d_{D}-1\} \rightarrow \{1, 2, \ldots , d_{D}\}\) be a bijection. Let \(\{{\mathbb {W}}_i\}_{i=0}^{d_{D}-2}, \{{\mathbb {N}}_i\}_{i=0}^{d_{D}-2}\) and \(\{{\mathbb {H}}_i\}_{i=0}^{d_{D}-2}\) be the sequences of block matrices constructed in Algorithms 4, 5, and 6, respectively. Also consider the numbers \(\alpha _{i} = p c(\sigma (0:i)) + m \mathfrak {i}(\sigma (0:i))\), \(\beta _{i} = p c(\sigma (i)) + m \mathfrak {i}(\sigma (i))\) and \(\alpha _{i}' = n c(\sigma (0:i)) + n \mathfrak {i}(\sigma (0:i))\), \(\beta _{i}' = n c(\sigma (i)) + n \mathfrak {i}(\sigma (i))\). Note that \(\beta _{i} = p\) if \(\sigma \) has a consecution at i and \(\beta _{i} = m\), if \(\sigma \) has an inversion at i, for \(i = 0, 1, 2, \ldots , d_{D}-2\). Then we have the following.

  1. (a)

    For \(1 \le i \le d_{D}-2\) we have

    $$\begin{aligned}{} & {} {\mathbb {N}}_i \left( \left[ \begin{array}{cc|cc} \lambda P_{d_{A}-i-2} &{} &{} &{} \\ &{} \lambda I_{\alpha _i'} &{} &{} \\ \hline &{} &{} \lambda Q_{d_{D}-i-2}&{} \\ &{} &{} &{} \lambda I_{\alpha _i} \\ \end{array} \right] -{\mathbb {W}}_i \right) {\mathbb {H}}_i\\{} & {} \qquad = \left[ \begin{array}{cc|cc} I_{\beta _i} &{} &{} 0 &{} 0 \\ &{} N_{i-1} \left( \left[ \begin{array}{cc} \lambda P_{d_{A}-i-1} &{} \\ &{} \lambda I_{\alpha '_{i-1}} \\ \end{array} \right] -W_{i-1} \right) H_{i-1} &{} 0 &{} -B \\ \hline 0 &{} 0 &{} I_{\beta _i} &{} \\ 0 &{} C &{} &{} N_{i-1}' \left( \left[ \begin{array}{cc} \lambda Q_{d_{D}-i-1} &{} \\ &{} \lambda I_{\alpha _{i-1}} \\ \end{array} \right] -W_{i-1}' \right) H_{i-1}' \\ \end{array} \right] \end{aligned}$$
  2. (b)

    For \(i = 0\)

    $$\begin{aligned} {\mathbb {N}}_0 \left( \left[ \begin{array}{cc|cc} \lambda P_{d_{A}-2} &{} &{} &{} \\ &{} \lambda I_{\alpha _0'} &{} &{} \\ \hline &{} &{} \lambda Q_{d_{D}-2} &{} \\ &{} &{} &{} \lambda I_{\alpha _0} \\ \end{array} \right] -{\mathbb {W}}_0 \right) {\mathbb {H}}_0 = \left[ \begin{array}{cc|cc} I_{\beta _0'} &{} &{} 0 &{} 0 \\ &{} A(\lambda ) &{} 0 &{} -B \\ \hline 0 &{} 0 &{} I_{\beta _0} &{} \\ 0 &{} C &{} &{} D(\lambda ) \\ \end{array} \right] \end{aligned}$$

Proof

The proof is analogous to the proof of Lemma 4.6. \(\square \)

Theorem 6.4

Let \(S(\lambda )\) be an \((n+p) \times (n+m)\) system matrix given in (1.5) with \(A(\lambda ) = \sum \nolimits _{i=0}^{d_A}\lambda ^{i}A_i\in \mathbb {C}[\lambda ]^{n\times n}\) and \(D(\lambda ) = \sum \nolimits _{i=0}^{d_D}\lambda ^{i}D_{i} \in \mathbb {C}[\lambda ]^{p\times m}\) with \(d_A < d_D\). Let \(\sigma : \{0, 1, \ldots , d_{D}-1\} \rightarrow \{1, 2, \ldots , d_{D}\}\) be a bijection. Then any Fiedler pencil \({\mathbb {L}}_{\sigma }(\lambda )\) is a linearization for \(S(\lambda )\) associated with any bijection \(\sigma .\)

Proof

The proof is analogous to the proof of Theorem 4.7. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, N., Bist, A. & Mehrmann, V. Fiedler Linearizations of Rectangular Rational Matrix Functions. Bull. Iran. Math. Soc. 50, 8 (2024). https://doi.org/10.1007/s41980-023-00843-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41980-023-00843-y

Keywords

Mathematics Subject Classification

Navigation