Skip to main content
Log in

Smooth Manifolds with Infinite Fundamental Group Admitting No Real Projective Structure

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

It is an important question whether it is possible to put a geometry on a given manifold or not. It is well known that any simply connected closed manifold admitting a real projective structure must be a sphere. Therefore, any simply connected manifold   M   which is not a sphere   \((\dim M \ge 4)\)   does not admit a real projective structure. Cooper and Goldman gave an example of a 3-dimensional manifold not admitting a real projective structure and this is the first known example. In this article, by generalizing their work, we construct a manifold   \(M^n\)   with the infinite fundamental group   \({\mathbb {Z}}_2 *{\mathbb {Z}}_2\),   for any   \(n\ge 4\),   admitting no real projective structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aschenbrenner, M., Friedl, S., Wilton, H.: 3-manifold groups. arXiv:1205.0202v3

  2. Benoist, Y.: Convexes divisibles. IV. Structure du bord en dimension 3. Invent. Math. 164(2), 249–278 (2006)

    Article  MathSciNet  Google Scholar 

  3. Çoban, H.: Smooth manifolds with infinite fundamental group admitting no real projective structure. Ph.D Thesis (2017)

  4. Çoban, H.: An obstruction to the existence of real projective structures. Topol. Appl. 265(3), 106828 (2019)

    Article  MathSciNet  Google Scholar 

  5. Choi, S.: Convex decompositions of real projective surfaces. I. \(\pi \)-annuli and convexity. J. Differ. Geom. 40(1), 165–208 (1994)

    Article  MathSciNet  Google Scholar 

  6. Choi, S.: Convex decompositions of real projective surfaces. II. Admissible decompositions. J. Differ. Geom. 40(2), 239–283 (1994)

    Article  MathSciNet  Google Scholar 

  7. Choi, S., Goldman, W.M.: The classification of real projective structures on compact surfaces. Bull. Am. Math. Soc. (N.S.) 34(2), 161–171 (1997)

    Article  MathSciNet  Google Scholar 

  8. Cooper, D., Goldman, W.: A 3-manifold with no real projective structure. Ann. Fac. Sci. Toulouse Math. (6) 24(5), 1219–1238 (2015)

    Article  MathSciNet  Google Scholar 

  9. Ehresmann, C.: Variétes localement projectives. L’ Enseignement Mathématique 35, 317–333 (1937)

    Google Scholar 

  10. Goldman, W.M.: Geometric structures on manifolds and varieties of representations. In: Geometry of Group Representations (Boulder, CO, 1987), Volume 74 of Contemp. Math., pp. 169–198. American Mathematical Society, Providence (1988)

  11. Goldman, W.M.: Convex real projective structures on compact surfaces. J. Differ. Geom. 31(3), 791–845 (1990)

    Article  MathSciNet  Google Scholar 

  12. Goldman, W.M.: What is\(\dots \)a projective structure? Not. Am. Math. Soc. 54(1), 30–33 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Goldman, W.M.: Locally homogeneous geometric manifolds. In: Proceedings of the International Congress of Mathematicians, vol. II, pp. 717–744. Hindustan Book Agency, New Delhi (2010)

  14. Molnár, E.: The projective interpretation of the eight \(3\)-dimensional homogeneous geometries. Beiträge Algebra Geom. 38(2), 261–288 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Ratcliffe, J.G.: Foundations of hyperbolic manifolds, volume 149 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (2006)

    Google Scholar 

  16. Reeb, G.: Sur certaines propriétés topologiques des variétés feuilletées. Actualités Sci. Ind., no. 1183. Hermann & Cie., Paris. Publ. Inst. Math. Univ. Strasbourg 11, pp. 5–89, 155–156 (1952)

  17. Thurston, W.P.: A generalization of the Reeb stability theorem. Topology 13, 347–352 (1974)

    Article  MathSciNet  Google Scholar 

  18. Thurston, W.P.: Three-dimensional geometry and topology. Volume 1, 35 of Princeton Mathematical Series. Princeton University Press, Princeton (1997). (Edited by Silvio Levy)

    Book  Google Scholar 

  19. Wilson, J.S.: Groups with every proper quotient finite. Proc. Camb. Philos. Soc. 69, 373–391 (1971)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am grateful to my supervisor Yıldıray Ozan for his support, comments, and useful conversations on this work. I thank the referee her/his comments and suggestions which improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatice Çoban.

Additional information

Communicated by Mohammad Koushesh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Choosing an Appropriate P Depending on the Matrix A

In this section, we continue choosing an appropriate   P   for   A   and calculate trace(Q) to say that the determinant of the Jacobian matrix at some points is nonzero by considering the following composition:

$$\begin{aligned} {\mathbb {R}}^2 \longrightarrow \mathrm{{GL}}(n+1, {\mathbb {R}}) \longrightarrow \mathrm{{SL}}(n+1, {\mathbb {R}}) \longrightarrow {\mathbb {R}}^2 \end{aligned}$$

given by:

$$\begin{aligned} (x, y) \longmapsto P \longmapsto f(P)=A P A P^{-1} \longmapsto g(Q)= (\text {trace}(Q), \text {trace}(Q^2)). \end{aligned}$$

Case 2: A   has two   \(-1\)   eigenvalues. Then, we choose   P   as follows:

\(\bullet \) If   t   is odd,

set   \(k=(t-1)/2\)   and   \(a_{k1}=y\).   If   \(k\ne (t-1)/2\),   let:

$$\begin{aligned} a_{k1} = \left\{ \begin{array}{l@{\quad }l} 1, &{} k\text { is odd},\\ 0, &{} k\text { is even}, \end{array} \right. \end{aligned}$$

\(a_{t2}=x,\,\, a_{t(t-1)}=y-x\),   \(a_{tk}=0\),   for \(3\le k \le t-2\),   \(a_{12}=y+x,\,\, a_{1(t-1)}=y\).   If   \(t\ne 5\),   take   \(a_{1((t+3)/2)}= a_{1((t-1)/2)}=1\);   otherwise,   \(a_{1k}=0\),   for   \(3\le k \le t-2\)   and if   \(t=5\),   then   \(a_{13}=1.\)   When   \(k=((t+1)/2)+1\)   let   \(a_{kt}=x\).   Otherwise, (i.e., \(k\ne ((t+1)/2)+1\)):

$$\begin{aligned} a_{kt} = \left\{ \begin{array}{l@{\quad }l} 0, &{} k\text { is odd},\\ 1, &{} k\text { is even}, \end{array} \right. \end{aligned}$$

and the core matrix   \((t-2)\times (t-2)\)   is the identity matrix.

If   A   has two   \(-1\)   eigenvalues and   \(t= 9\),   then we choose   \(P_{t\times t}\)   as below:

$$\begin{aligned} \begin{bmatrix} 1 &{}\quad y+x &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad y &{}\quad 0 \\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ 1 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ y &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 \\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad x\\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 1\\ 1 &{}\quad x &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad y-x &{}\quad 0 \end{bmatrix}. \end{aligned}$$

If \((t-1)/2\) is even, then:

$$\begin{aligned} \begin{aligned} \text {trace}(Q)&= t-6-\frac{2y}{1+y+2x+y^2}-\frac{-y-x}{1+y+2x+y^2}-\frac{1+y^2}{1+y+2x+y^2}\\&\quad -\frac{-1-2x-y^2+yx}{1+y+2x+y^2} -\frac{y(1+x)}{1+y+2x+y^2}-\frac{-y^2}{1+y+2x+y^2}+\frac{y+2x}{1+y+2x+y^2}\\&\quad +\frac{1}{1+y+2x+y^2} +\frac{1+y+x+y^2}{1+y+2x+y^2}+\frac{1+y+x+yx}{1+y+2x+y^2}-\frac{-x-y^2+yx}{1+y+2x+y^2}\\&\quad -\frac{1+2y+2x}{1+y+2x+y^2} -\frac{x(-1+y)}{1+y+2x+y^2}+\frac{(y-x)(-1+y)}{1+y+2x+y^2}, \end{aligned} \end{aligned}$$

where \(Q= A P A P^{-1}\).

Considering the same map with the case   t   is even, we get the determinant of the Jacobian matrix at   (2, 3)   is   \(\displaystyle -\frac{1792}{4913}\).

If   \((t-1)/2\)   is odd, then:

$$\begin{aligned} \begin{aligned} \text {trace}(Q)&=t-6-\frac{3y}{y^2+2y+2x}-\frac{-y-x}{y^2+2y+2x}-\frac{2y^2}{y^2+2y+2x}-\frac{y+x}{y^2+2y+2x}\\&\quad -\frac{-y^2+yx-y-x}{y^2+2y+2x} -\frac{xy+y+x}{y^2+2y+2x}+\frac{y^2+y+x}{y^2+2y+2x}+\frac{x}{y^2+2y+2x}\\&\quad + \frac{yx+2x+y}{y^2+2y+2x} -\frac{y(x-y-1)}{y^2+2y+2x} -\frac{xy}{y^2+2y+2x}+\frac{y(y-x)}{y^2+2y+2x}, \end{aligned} \end{aligned}$$

and the determinant of the Jacobian matrix at   (2, 3)   is   \(\displaystyle -\frac{768}{6859}\).

In each case, the determinant of the Jacobian is nonzero, and thus, the image of the map   \(f \circ g\)   contains an open set.

Case 3: If   A   has more than two   \(-1\)   eigenvalues, we take   P   as below.

First, consider the following composition:

$$\begin{aligned} {\mathbb {R}}^k \longrightarrow \mathrm{{GL}}(n+1, {\mathbb {R}}) \longrightarrow \mathrm{{SL}}(n+1, {\mathbb {R}}) \longrightarrow {\mathbb {R}}^k, \end{aligned}$$

given by:

$$\begin{aligned} (x_1, x_2, ..., x_k) \longmapsto P \longmapsto f(P)=A P A P^{-1}= Q \longmapsto g(Q), \end{aligned}$$

where   \(g(Q)= (\text {trace}(Q), \text {trace} (Q^2), ... , \text {trace}(Q^k))\)   and   k   is the number of   \(-1\)   eigenvalues of   A.   The Jacobian matrix is given by:

$$\begin{aligned} {\mathbf {J}} = \left[ \begin{array}{cccc} \displaystyle \frac{\partial \ \text {trace}(Q)}{\partial x_1} &{} \displaystyle \frac{\partial \ \text {trace}(Q)}{\partial x_2} &{} \dots &{} \displaystyle \frac{\partial \ \text {trace}(Q)}{\partial x_k} \\ \displaystyle \frac{\partial \ \text {trace}(Q^2)}{\partial x_1} &{} \displaystyle \frac{\partial \ \text {trace}(Q^2)}{\partial x_2} &{} \dots &{} \displaystyle \frac{\partial \ \text {trace}(Q^2)}{\partial x_k} \\ \vdots &{} \vdots &{} \vdots &{} \vdots \\ \displaystyle \frac{\partial \ \text {trace}(Q^k)}{\partial x_1} &{} \displaystyle \frac{\partial \ \text {trace}(Q^k)}{\partial x_2} &{} \dots &{} \displaystyle \frac{\partial \ \text {trace}(Q^k)}{\partial x_k} \end{array} \right] . \end{aligned}$$

\(\bullet \) If   t   is even,

let \(a_{12}=x_2,\quad a_{1(t/2)}=a_{1(t+2)/2}=x_3,\quad a_{1(t-1)}=x_1,\quad a_{2(t-2)}=x_3,\) \(a_{(t/2)1}=x_2,\quad a_{((t+2)/2)1}=x_3,\quad a_{(t/2)t}=x_3,\quad a_{((t+2)/2)t}=x_1, a_{(t-1)1}=1,\quad a_{t2}=x_3,\quad a_{t(t-1)}=x_2\),   and all the diagonal elements are   1.

According to the number of   \(-1\)   eigenvalues of   A,   we determine the number of different variables   \(x_i \in {\mathbb {R}}\),   where   \(3\le i \le k\)   and   \(k=t/2\). In the core matrix, on the antidiagonal, there are only   \(x_i\)’s   (except \(x_3\)) as a pair, which are symmetric with respect to the diagonal. Moreover, the number of some   \(x_i\)s   is more than two conforming to the dimension. In addition, other entries of   P   are all   0.

For example, if   A   has six   \(-1\)   eigenvalues and   \(t=14\)   then   P   is as below:

$$\begin{aligned} {P} = \left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 1 &{} x_2 &{} 0 &{} 0 &{} 0 &{} 0 &{} x_3 &{} x_3 &{} 0 &{} 0 &{} 0 &{} 0 &{} x_1 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} x_3&{} x_2 &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} x_2 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} x_5 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} x_6 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{}0 &{} 1 &{} 0 &{} 0 &{} x_4 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ x_2 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} x_1&{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} x_3\\ x_3 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} x_1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} x_1\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} x_4 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} x_6 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} x_5 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} x_2 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 \\ 1 &{} x_2 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} x_3 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} x_2 &{} 1 \end{array} \right] . \end{aligned}$$

At the point   (2, 3, 4, 5, 6, 7)   the determinant of the Jacobian is:

$$\begin{aligned} \frac{3203652023}{129225403018523774123952000}. \end{aligned}$$

\(\bullet \) If   t   is odd,

let \(a_{12}=x_2,\quad a_{1(t+1)/2}=x_3,\quad a_{1(t-1)}=x_1,\quad a_{2(t-2)}=x_3\), \(a_{((t-1)/2)1}=x_2,\quad a_{((t+1)/2)1}=1,\quad a_{((t+3)/2)1}=x_3,\quad a_{(t-1)1}=1\), \(a_{((t-1)/2)t}=x_3,\quad a_{((t+3)/2)t}=x_1,\quad a_{t2}=x_3,\quad a_{t(t-1)}=x_2\)   and the diagonal elements are all   1.

In the core matrix, on the antidiagonal, there are only   \(x_i\)’s   (except \(x_3\)) as a pair, which are symmetric with respect to the diagonal. Moreover, the number of some   \(x_i\)’s   are more than two conforming to the dimension. In addition, other entries of   P   are all   0.

For example, if   A   has five   \(-1\)   eigenvalues and   \(t=13\)   then   P   is as follows:

$$\begin{aligned} {P} = \left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 1 &{} x_2 &{} 0 &{} 0 &{} 0 &{} 0 &{} x_3 &{} 0 &{} 0 &{} 0 &{} 0 &{} x_1 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} x_3&{} x_2 &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} x_2 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} x_5 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} x_4 &{} 0 &{} 0 &{} 0 &{} 0\\ x_2 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0&{} x_1 &{} 0 &{} 0 &{} 0 &{} 0 &{} x_3\\ 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ x_3 &{} 0 &{} 0 &{} 0 &{} 0 &{} x_1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} x_1\\ 0 &{} 0 &{} 0 &{} 0 &{} x_4 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} x_5 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} x_2 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 \\ 1 &{} x_2 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} x_3 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} x_2 &{} 1 \end{array} \right] . \end{aligned}$$

At the point   (2, 3, 4, 5, 6)   the determinant of the Jacobian is:

$$\begin{aligned} \frac{74929536}{42961619719375}. \end{aligned}$$

Case 4: If   A   has eigenvalues   \(\pm i\)   then both   \(+i\)   eigenspace and   \(-i\)   eigenspace of   A   are   \(\displaystyle \frac{n+1}{2}\)   dimensional. Now, we choose   P   as in Case 3 with   \(k=\displaystyle \frac{n+1}{2}\) variables.

Remark 4.10

Note that choosing an appropriate P depends on the number of \(-1\) eigenvalues of the matrix A and it can be generalized to all dimensions.

The calculations above are done with the program Maple.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çoban, H. Smooth Manifolds with Infinite Fundamental Group Admitting No Real Projective Structure. Bull. Iran. Math. Soc. 47 (Suppl 1), 335–363 (2021). https://doi.org/10.1007/s41980-020-00495-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-020-00495-2

Keywords

Mathematics Subject Classification

Navigation