Skip to main content
Log in

Invariant Systems with Dissipative Operators

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of the strong and weak invariance property of a system (SF), where S is a closed subset of a Hilbert space H, and F an autonomous set-valued mapping defined on H; under a dissipative condition. We give a characterization of “approximate” strongly and weakly invariant systems in H and state the equivalence between week and strong invariance in finite dimensional setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, New York (1984)

    Book  MATH  Google Scholar 

  2. Bony, J.M.: Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier Grenoble 19, 277–304 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezis, H.: On a characterization of flow-invariant sets. Commun. Pure Appl. Math. 23, 261–263 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  4. Clarke, F., Ledyaev, Yu., Radulescu, M.: Approximate invaraince and differential inclusions in Hilbert spaces. J. Dyn. Control Syst. 3, 493–518 (1997)

    MATH  Google Scholar 

  5. Clarke, F., Ledyaev, Yu., Stern, R., Wolneski, P.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    Google Scholar 

  6. Clarke, F., Ledyaev, Yu., Stern, R., Wolneski, P.: Qualitative properties of trajectories of control theory: a survey. J. Dyn. Control Syst. 1, 1–48 (1995)

    Article  Google Scholar 

  7. Crandall, M.G.: A generalization of Peano’s theorem and flow invariance. Proc. Am. Math. Soc. 36, 51–55 (1972)

    MathSciNet  MATH  Google Scholar 

  8. Deimling, K.: Multivalued Diffrential Equations. De Gruyter, Berlin (1992)

    Book  MATH  Google Scholar 

  9. Deimling, K., Szilágyi, P.: Periodic solutions of dry friction problems. J. Z. Angew. Math. Phys. 45(45), 53–60 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Donchev, T.: Properties of the reachable set of control systems. Syst. Control Lett. 46, 379–386 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Donchev, T., Rios, V., Wolneski, P.: Strong invariance and one-sided Lipschitz multifunctions. Nonlinear Anal. 60, 849–862 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Frankowska, H., Palaskacz, S., Rzezuchowski, T.: Measurable viability theorems and the Hamilton–Jacobi–Bellman equation. J. Differ. Equ. 116, 265–305 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Frankowska, H., Palaskacz, S.: A measurable upper semicontinuous viability theorem for tubes. Nonlinear Anal. Theory Methods Appl. 26, 565–582 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haddad, G.: Monotone trajectories of differential inclusions and functional differential inclusions with memory. Isr. J. Math. 39, 83–100 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ledyaev, Y.S., Clarke, F., Ledyaev, Yu., Stern, R., Wolneski, P.: Criteria for viability of trajectories of nonaotonomous differential inclusions and their applications. J. Math. Anal. Appl. 182(1), 165–188 (1994)

    Article  MathSciNet  Google Scholar 

  16. Nagumo, M.: Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen. Proc. Phys. Math. Soc. Japan. 24, 551–559 (1942)

  17. Rapaport, A.E., Vinter, R.B.: Invariance properties of time measurable differential inclusions and dynamic programming. J. Dyn. Control Syst. 2(3), 423–448 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Redheffer, R.M., Walter, W.: Invariance properties of time measurable differential inclusions and dynamic programming. App. Anal. 5, 149–161 (1975)

    Article  Google Scholar 

  19. Rios, V.: Dissipative Lipschitz Dynamics, Thesis, Louisiana State University (2005)

  20. Rios, V., Wolneski, P.: A characterization of strong invariant for systems for a class of non-Lipschitz multifunctions. In: Proceedings IEEE Conference on Decision and Control, Maui, Hawaii (2003), pp. 2593–2594

  21. Veliov, V.M.: Sufficient conditions for viability under imperfect measurement. Set-valued Anal. 1, 305–317 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Fateh Yarou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiour, M., Yarou, M.F. Invariant Systems with Dissipative Operators. Bull. Iran. Math. Soc. 44, 643–657 (2018). https://doi.org/10.1007/s41980-018-0041-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-018-0041-x

Keywords

Mathematics Subject Classification

Navigation