Skip to main content
Log in

Characterizations of Graded Prüfer \(\star \)-Multiplication Domains, II

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

Let \(R=\bigoplus _{\alpha \in \Gamma }R_{\alpha }\) be a graded integral domain and \(\star \) be a semistar operation on R. For \(a\in R\), denote by C(a) the ideal of R generated by homogeneous components of a and for \(f=f_0+f_1X+\cdots +f_nX^n\in R[X]\), let \(\mathcal {A}_f:=\sum _{i=0}^nC(f_i)\). Let \(N(\star ):=\{f\in R[X]\mid f\ne 0\text { and }\mathcal {A}_f^{\star }=R^{\star }\}\). In this paper, we study relationships between ideal theoretic properties of \({\text {NA}}(R,\star ):=R[X]_{N(\star )}\) and the homogeneous ideal theoretic properties of R. For example, we show that R is a graded Prüfer-\(\star \)-multiplication domain if and only if \({\text {NA}}(D,\star )\) is a Prüfer domain and if and only if \({\text {NA}}(R,\star )\) is a Bézout domain. We also determine when \({\text {NA}}(R,v)\) is a PID.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, D.D.: Some remarks on the ring \(R(X)\). Comment. Math. Univ. St. Pauli 26, 137–140 (1977)

    MathSciNet  MATH  Google Scholar 

  2. Anderson, D.D., Anderson, D.F.: Divisorial ideals and invertible ideals in a graded integral domain. J. Algebra 76, 549–569 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, D.D., Anderson, D.F.: Divisibility properties of graded domains. Can. J. Math. 34, 196–215 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, D.F., Chang, G.W.: Graded integral domains and Nagata rings. J. Algebra 387, 169–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anderson, D.F., Chang, G.W.: Homogeneous splitting sets of a graded integral domain. J. Algebra 288, 527–544 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Anderson, D.F., Fontana, M., Zafrullah, M.: Some remarks on Prüfer \(\star \)-multiplication domains and class groups. J. Algebra 319, 272–295 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Anderson, D.D., Kang, B.G.: Content formulas for polynomials and power series and complete integral closure. J. Algebra 181, 82–94 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arnold, J.T., Brewer, J.W.: Kronecker function rings and flat \(D[X]\)-modules. Proc. Am. Math. Soc. 27, 483–485 (1971)

    MathSciNet  MATH  Google Scholar 

  9. Chang, G.W.: Prüfer \(*\)-multiplication domains, Nagata rings, and Kronecker function rings. J. Algebra 319, 309–319 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Davis, E.: Overrings of commutative rings, II. Trans. Am. Math. Soc. 110, 196–212 (1964)

    Article  MATH  Google Scholar 

  11. Dobbs, D.E., Houston, E.G., Lucas, T.G., Zafrullah, M.: t-Linked overrings and Prüfer v-multiplication domains. Commun. Algebra 17, 2835–2852 (1989)

    Article  MATH  Google Scholar 

  12. El Baghdadi, S., Fontana, M.: Semistar linkedness and flatness, Prüfer semistar multiplication domains. Commun. Algebra 32, 1101–1126 (2004)

    Article  MATH  Google Scholar 

  13. Fontana, M., Huckaba, J.A.: Localizing systems and semistar operations. In: Chapman, S., Glaz, S. (eds.) Non Noetherian Commutative Ring Theory, pp. 169–197. Kluwer, Dordrecht (2000)

    Chapter  Google Scholar 

  14. Fontana, M., Jara, P., Santos, E.: Prüfer \(\star \)-multiplication domains and semistar operations. J. Algebra Appl. 2, 21–50 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fontana, M., Loper, K.A.: Nagata rings, Kronecker function rings and related semistar operations. Commun. Algebra 31, 4775–4801 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fontana, M., Loper, K. A.: A Krull-type theorem for semistar integral closure of an integral domain. In: ASJE Theme Issue “Commutative Algebra”, vol. 26, pp. 89–95 (2001)

  17. Fontana, M., Loper, K.A.: Kronecker function rings: a general approach. In: Anderson, D.D., Papick, I.J. (eds.) Ideal Theoretic Methods in Commutative Algebra. Lecture Notes Pure Appl, vol. 220, pp. 189–205. Dekker, New York (2001)

    Google Scholar 

  18. Fontana, M., Loper, K.A.: A historical overview of Kronecker function rings, Nagata rings, and related star and semistar operations. In: Brewer, J.W., Glaz, S., Heinzer, W.J., Olberding, B.M. (eds.) Multiplicative Ideal Theory in Commutative Algebra. A Tribute to the Work of Robert Gilmer, pp. 169–187. Springer, Berlin (2006)

    Chapter  Google Scholar 

  19. Fontana, M., Picozza, G.: Semistar invertibility on integral domains. Algebra Colloq. 12(4), 645–664 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gilmer, R.: Multiplicative Ideal Theory. Dekker, New York (1972)

    MATH  Google Scholar 

  21. Jaffard, P.: Les Systèmes d’Idéaux. Dunod, Paris (1960)

    MATH  Google Scholar 

  22. Kang, B.G.: Prüfer \(v\)-multiplication domains and the ring \(R[X]_{N_v}\). J. Algebra 123, 151–170 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaplansky, I.: Commutative Rings, revised edn. University of Chicago Press, Chicago (1974)

    MATH  Google Scholar 

  24. Nagata, M.: Local Rings. Wiley-Interscience, New York (1962)

    MATH  Google Scholar 

  25. Northcott, D.G.: A generalization of a theorem on the content of polynomials. Proc. Camb. Philos. Soc. 55, 282–288 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  26. Northcott, D.G.: Lessons on Rings, Modules, and Multiplicities. Cambridge University Press, Cambridge (1968)

    Book  MATH  Google Scholar 

  27. Okabe, A., Matsuda, R.: Semistar-operations on integral domains. Math. J. Toyama Univ. 17, 1–21 (1994)

    MathSciNet  MATH  Google Scholar 

  28. Richman, F.: Generalized quotient rings. Proc. Am. Math. Soc. 16, 794–799 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sahandi, P.: Characterizations of graded Prüfer \(\star \)-multiplication domains. Korean J. Math. 22, 181–206 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the referee for an insightful report. This project was in part supported by a grant from IPM (No. 91130030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parviz Sahandi.

Additional information

Communicated by Siamak Yassemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahandi, P. Characterizations of Graded Prüfer \(\star \)-Multiplication Domains, II. Bull. Iran. Math. Soc. 44, 61–78 (2018). https://doi.org/10.1007/s41980-018-0005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-018-0005-1

Keywords

Mathematics Subject Classification

Navigation