Skip to main content

Advertisement

Log in

Fracture Network Mapping Using Landsat 8 OLI Data and Linkage with the Karst System: a Case Study of the Moroccan Central Middle Atlas

  • Original Paper
  • Published:
Remote Sensing in Earth Systems Sciences Aims and scope Submit manuscript

Abstract

The central Middle Atlas, with its Mesozoic carbonate cover has undergone several tectonic and karstic phases and is characterized by a hydrological system with a complex karstification. The spatial and structural analysis of fractures and karst networks in a complex hydrological system may allow for the accurate identification of zones that favor the infiltration and recharge of overexploited groundwater. The present study aims to characterize the fracture network in the Moroccan Central Middle Atlas using multispectral satellite images from a Landsat 8 Operational Land Imager sensor for automatic lineament extraction. Our methodology focuses on a linkage between the direction, length, and density of lineaments with the characteristics of surface karst as well as the tectonic system of the study area. The remote sensing techniques used have shown their effectiveness in lineament mapping, such as principal component analysis coupled with directional filters. The resultant fracture network is oriented NE–SW, N–S, and NW–SE with a predominance of the NE–SW direction, showing a good correlation between the distribution and orientation of the lineaments and the alignments and elongations of the karstic shapes. In addition, this paper explains the tectonic origin of surface karstic shapes and the influence of tectonic and karstification on the distribution and function of the hydrological system of the Central Middle Atlas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abdullah A, Nassr S, Ghaleeb A (2013) Remote sensing and geographic information system for fault segments mapping a study from Taiz area, Yemen. J Geol Res 2013:1–16. https://doi.org/10.1155/2013/201757

    Google Scholar 

  2. Adiri Z, El Harti A, Jellouli A, Maacha L, Bachaoui E (2016) Lithological mapping using Landsat 8 OLI and Terra ASTER multispectral data in the Bas Drâainlier, Moroccan Anti Atlas. J Appl Remote Sens 10(1):016005 14. https://doi.org/10.1117/1.JRS.10.016005

    Article  Google Scholar 

  3. Adiri Z, El Harti A, Jellouli A, Lhissou R, Maacha L, Azmi M, Zouhair M, Bachaoui E (2017) Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineament extraction: a case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas. Adv Space Res 60(11):2355–2367. https://doi.org/10.1016/j.asr.2017.09.006

    Article  Google Scholar 

  4. Alonso C, Carla A (2011) Lineament mapping for groundwater exploration using remotely sensed imagery in a karst terrain: Rio Tanama and Rio de Arecibo basins in the northern karst of Puerto Rico. Master’s thesis, Michigan Technological University.. https://digitalcommons.mtu.edu/etds/309. Accessed 2 Jan 2019

  5. Amer R, Kusky T, Ghulam A (2010) Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. J Afr Earth Sci 56:75–82. https://doi.org/10.1016/j.jafrearsci.2009.06.004

    Article  Google Scholar 

  6. Amer R, Kusky T, El Mezayen A (2012) Remote sensing detection of gold related alteration zones in um Rus area, Central Eastern Desert of Egypt. Adv Space Res 49:121–134. https://doi.org/10.1016/j.asr.2011.09.024

    Article  Google Scholar 

  7. Argialas D, Mavrantza O, Stefouli M (2003) Automatic mapping of tectonic lineaments (faults) using methods and techniques of photointerpretation /digital remote sensing and expert systems (geology no. THALES Project 1174). https://pdfs.semanticscholar.org/defb/d1569f26d39d20a7ea8aaab0bd0392bc69b9.pdf. Accessed 2 Jan 2019

  8. Aydin A (1984) Diverse Pliocène-Quaternary tectonics in a transform environment, San Francisco Bay region, California. Geol Soc Am Bull Page BM 95:1303–1317

    Article  Google Scholar 

  9. Baali A (1998) Genèse et évolution au Plio-Quaternaire de deux bassins intramontagneux en domaine carbonaté méditerranéen. Les bassins versants des Dayets Afourgagh et Agoulmam (Moyen Atlas, Maroc) (Doctoral dissertation, Thèse, Université Sidi Mohamed Ben Abdellah de Fès, 326p)

  10. Bruning JN, Gierke JS, Maclean AL (2011) An approach to lineament analysis for groundwater exploration in Nicaragua. Photogramm Eng Remote Sens 77:509–519. https://doi.org/10.14358/PERS.77.5.509

    Article  Google Scholar 

  11. Colo G (1961) Contribution a l'étude du Jurassique du Moyen Atlas septentrional: Atlas de planches hors texte. Éd. de la Division de la géologie, Direction, Ministère, Royaume du Maroc

  12. Cooley T, Anderson G P, Felde G W, Hoke M L, Ratkowski A J, Chetwynd J H et al. (2002) FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In Geoscience and Remote Sensing Symposium, 2002. IGARSS'02. 2002 IEEE International (Vol. 3, pp. 1414–1418). IEEE

  13. Corgne S, Magagi R, Yergeau M, Sylla D (2010) An integrated approach to hydro-geological lineament mapping of a semi-arid region of West Africa using Radarsat-1 and GIS. Remote Sens Environ 114(9):1863–1875. https://doi.org/10.1016/j.rse.2010.03.004

    Article  Google Scholar 

  14. Crippen RE (1988) The dangers of underestimating the importance of data adjustments in band rationing. Remote Sens 9(4):767–776. https://doi.org/10.1080/01431168808954891

    Article  Google Scholar 

  15. Davraz A, Karaguzel R, Soyaslan I et al (2009) Hydrogeology of karst aquifer systems in SW Turkey and an assessment of water quality and contamination problems. Environ Geol 58:973. https://doi.org/10.1007/s00254-008-1577-5

    Article  Google Scholar 

  16. Gabr S, Ghulam A, Kusky T (2010) Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol Rev 38(1–2):59–69. https://doi.org/10.1016/j.oregeorev.2010.05.007

    Article  Google Scholar 

  17. Hashim M, Ahmad S, Johari MAM, Pour AB (2013) Automatic lineament extraction in a heavily vegetated region using Landsat Enhanced Thematic Mapper (ETM+) imagery. Adv Space Res 51(5):874–890. https://doi.org/10.1016/j.asr.2012.10.004

    Article  Google Scholar 

  18. Hatzfeld D, Frogneux M (1981) Intermediate depth seismicity in the Western Mediterranean unrelated to subduction of oceanic lithosphere. Nature 292:443–445. https://doi.org/10.1038/292443a0

    Article  Google Scholar 

  19. Hobbs WH (1904) Lineaments of the Atlantic border region. Geol Soc Am Bull 15:483–506. https://doi.org/10.1130/GSAB-15-483

    Article  Google Scholar 

  20. Hung L. Q, Batelaan O, De Smedt F (2005 Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam. In Remote Sensing for Environmental Monitoring, GIS Applications, and Geology V (Vol. 5983, p. 59830T). International Society for Optics and Photonics. doi https://doi.org/10.1117/12.627699

  21. Jourda JPR, Saley MB, Djagoua EV, Kouamé KJ, Biémi J, Razack M (2006) Utilisation des données ETM+ de Landsat et d’un SIG pour l’évaluation du potentiel en eau souterraine dans le milieu fissuré précambrien de la région de Korhogo (Nord de la Côte d’Ivoire): approche par analyse multicritère et test de validation. Télédétection 5(4):339–357

    Google Scholar 

  22. Kavak KS (2005) Determination of palaeotectonic and neotectonic features around the Menderes Massif and the Gediz Graben (West. Turkey) using Landsat TM image. Int J Remote Sens 26(1):59–78. https://doi.org/10.1080/01431160410001709994

    Article  Google Scholar 

  23. Li N (2010) Textural and rule-based lithological classification of remote sensing data, and geological mapping in Southwestern Prieska Subbasin, Transvaal Supergroup, South Africa. In: Thesis presented in at the Faculty of Earth Sciences the Ludwig Maximilian University Munich, Germany

  24. Maina MM, Tudunwada Y (2017) Lineament mapping for groundwater exploration in Kano state, Nigeria. Int J of Adv in Agri & Envir Engg 4(1):226–229. http://ijaaee.iicbe.org/index.php?id=18. Accessed 2 Jan 2019

  25. Mansour M, Ait Brahim L (2005) Utilisation de la télédétection pour l’analyse de la fracturation du domaine interne rifain (Maroc): relation avec la répartition des sources. Télédétection 5(1–2-3):95–103

    Google Scholar 

  26. Marghany M, Hashim M (2010) Lineament mapping using multispectral remote sensing satellite data. Res J Appl Sci 5:126–130. https://doi.org/10.3923/rjasci.2010.126.130

    Google Scholar 

  27. Marion A (1987) Introduction to Image Processing. Springer US, Springer Science+Business Media, Dordrecht, p 314. https://doi.org/10.1007/978-1-4899-3186-3

  28. Martin J, (1973) Carte géomorphologique du Moyen Atlas central au 1/100 000, 5 feuilles El Hajeb-Sefrou Ain Leuh-Boulmane-Kerrouchène.Notes et mémoires du service géologique. Maroc, no. 258

  29. Martin J (1981) Le Moyen Atlas central, étude géomorphologique. Published by Service Géologique du Maroc, Rabat Morocco. Notes et Mémoire n° 258 et 258 bis, p 447

  30. Masoud AA, Koike K (2006) Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt. J Afr Earth Sci 45(4–5):467–477. https://doi.org/10.1016/j.jafrearsci.2006.04.005

    Article  Google Scholar 

  31. Masoud AA, Koike K (2017) Applicability of computer-aided comprehensive tool (LINDA) and shaded digital elevation model for characterizing and interpreting morphotectonic features from lineaments. Comput Geosci. https://doi.org/10.1016/j.cageo.2017.06.006

  32. Meshkani SA, Mehrabi B, Yaghubpur, Sadeghi M (2013) Recognition of the regional lineaments of Iran: using geospatial data and their implications for exploration of metallic ore deposits. Ore Geol Rev 55:48–63. https://doi.org/10.1016/j.oregeorev.2013.04.007

    Article  Google Scholar 

  33. Michard A (1976) Eléments de géologie marocaine. Published by Service Géologique du Maroc, Rabat, Morocco. Notes et Mémoire No. 252, p 408

  34. Mwaniki MW, Matthias MS, Schellmann G (2015a) A comparison of Landsat 8 (OLI) and Landsat 7 (ETM+) in mapping geology and visualizing lineaments: a case study of central region Kenya. Int Arch Photogramm Remote Sens Spat Inf Sci XL-7/W3:897–903. https://doi.org/10.5194/isprsarchives-XL-7-W3-897-2015

    Article  Google Scholar 

  35. Mwaniki MW, Matthias MS, Schellmann G (2015b) Application of remote sensing technologies to map the structural geology of central region of Kenya. IEEE J Sel Topics Appl Earth Observ Remote Sens 8(4):1855–1867. https://doi.org/10.1109/JSTARS.2015.2395094

    Article  Google Scholar 

  36. Nanda S, Annadurai R, Barik KK (2017) Geospatial decipherment of groundwater potential of Kattankolathur block of Tamil Nadu using MCDM techniques. Remote Sens App Soc Env 8:240–250. https://doi.org/10.1016/j.rsase.2017.10.002

    Google Scholar 

  37. Nicod J (1972) Pays et paysages du calcaire. In: Norois, no. 79, Juillet-Septembre 1973. pp. 566–568. www.persee.fr/doc/noroi_0029-182x_1973_num_79_1_3316_t1_0566_0000_1

  38. Paganelli F, Grunsky E, Richards J, Pryde R (2003) Use of radarsat-1 principal component imagery for structural mapping: a case study in the buffalo head hills area, northern 11 Central Alberta, Canada. Can J Remote Sens 29(1):111–140. https://doi.org/10.5589/m02-084

    Article  Google Scholar 

  39. Pour AB, Hashim M (2011) Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. J Asian Earth Sci 42:1309–1323. https://doi.org/10.1016/j.jseaes.2011.07.017

    Article  Google Scholar 

  40. Pour AB, Hashim M (2012) The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geol Rev 44:1–9. https://doi.org/10.1016/j.oregeorev.2011.09.009

    Article  Google Scholar 

  41. Pour BA, Hashim M (2014) Structural geology mapping using PALSAR data in the Bau gold mining district, Sarawak, Malaysia. Adv Sp Res 54(4):644–654. https://doi.org/10.1016/j.asr.2014.02.012

    Article  Google Scholar 

  42. Pour BA, Hashim M (2015a) Structural mapping using PALSAR data in the central Gold belt, Peninsular Malaysia. Ore Geol Rev 64:13–22. https://doi.org/10.1016/j.oregeorev.2014.06.011

    Article  Google Scholar 

  43. Pour BA, Hashim M (2015b) Integrating PALSAR and ASTER data for mineral deposits exploration in tropical environments: a case study from Central Belt, peninsular Malaysia. Int J Image Data Fusion 6(2):170–188. https://doi.org/10.1080/19479832.2014.985619

    Article  Google Scholar 

  44. Pour BA, Hashim M, Makoundi C, Zaw K (2016) Structural mapping of the Bentong-Raub suture zone using PALSAR remote sensing data, peninsular Malaysia: implications for sediment-hosted/ orogenic gold mineral systems exploration. Resour Geol 66(4):368–385. https://doi.org/10.1111/rge.12105

    Article  Google Scholar 

  45. Qari MHT, Madani AA, Matsah MIM, Hamimi Z (2008) Utilization of Aster and Landsat data in geologic mapping of basement rocks of Arafat area. Saudi Arabia Arab J for Sci and Engg 33(1C):99–117

    Google Scholar 

  46. Raynal R (1961) Plaines et piemonts du bassin de la Moulouya (Maroc oriental): étude géomorphologique. Imframar, Rabat, p 617

    Google Scholar 

  47. Roy DP, Wulder MA, Loveland TR, Woodcock CE, Allen RG, Anderson MC et al (2014) Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ 145:154–172. https://doi.org/10.1016/j.rse.2014.02.001

    Article  Google Scholar 

  48. Saadi M (1982) Carte structurale du Maroc, 1:2,000,000. Published by Service Géologique du Maroc, Rabat, Morocco. Notes et Mémoires No. 278

  49. Saadi NM, Zaher MA, El-Baz F, Watanabe K (2011) Integrated remote sensing data utilization for investigating structural and tectonic history of the Ghadames Basin, Libya. Int J Appl Earth Obs Geoinf 13(5):778–791. https://doi.org/10.1016/j.jag.2011.05.016

    Article  Google Scholar 

  50. Sahoo S, Das P, Kar A, Dhar A (2018) A forensic look into the lineament, vegetation, groundwater linkage: study of Ranchi District, Jharkhand (India). Remote Sens App Soc Env 10:138–152. https://doi.org/10.1016/j.rsase.2018.04.001

  51. Segall P, Pollard DD (1980) Mechanics of discontinuous faults. J Geophys Res 85:4337–4350

    Article  Google Scholar 

  52. Süzen ML, Toprak V (1998) Filtering of satellite images in geological lineament analyses: an application to a fault zone in Central Turkey. Int J Remote Sens 19(19):1101–1114. https://doi.org/10.1080/014311698215621

    Article  Google Scholar 

  53. Thrailkill J (1977) Relative solubilities of limestone and dolomite. Karst hydrology. AIH Memoirs 12:491–500

    Google Scholar 

  54. Won-In K, Charusiri P (2003) Enhancement of thematic mapper satellite images for geological mapping of the Cho Dien area, northern Vietnam. Int J Appl Earth Obs Geoinf 4(3):183–193. https://doi.org/10.1016/S0303-2434(02)00034-X

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Faculty of Sciences Dhar Mahraz for its financial and logistical support. The authors also would like to thank the U.S. Geological Survey (USGS) for providing; free of charge the Landsat 8 OLI data. Finally, would like to thank the anonymous referees for their consistent reviewing and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Hamdani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdani, N., Baali, A. Fracture Network Mapping Using Landsat 8 OLI Data and Linkage with the Karst System: a Case Study of the Moroccan Central Middle Atlas. Remote Sens Earth Syst Sci 2, 1–17 (2019). https://doi.org/10.1007/s41976-019-0011-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41976-019-0011-y

Keywords

Navigation