Skip to main content
Log in

Modeling the performance characteristics of optocoupler under irradiated fields

  • Original Paper
  • Published:
Multiscale and Multidisciplinary Modeling, Experiments and Design Aims and scope Submit manuscript

Abstract

Optoelectronic devices, including optocouplers, are used in optical communication, controlling and sensing applications. Many of these applications are used under the influence of radiation; in some applications, it is difficult to shield the devices from radiation. The interaction of radiation with devices materials produces the defects. Several studies have been conducted on the effects of radiation on the optocoupler; most of them were interested in practical experiments, recording and describing the results. The behavior of an irradiated optocoupler still needs a mathematical model that can describe the optical and electrical characteristics of the device under the effect of radiation. This paper presents a mathematical model that includes the governing equations of the radiation effect in digital optocouplers. The validity of the model is verified by comparing its numerical values with the previous experimental results of neutrons and gamma radiations’ effects in one of the most popular digital optocouplers (4N49); the maximum error of the current transfer ratio of the device is 14% at 100 krad gamma dose and error reduces at the low doses. By adapting input parameters, this model can be applied to describe the effect of other types and doses of radiation on different types of optocouplers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adachi S (1992) Physical properties of III–V semiconductor compounds InP, InAs, GaAs, GaP, InGaAs, and InGaAsP. Wiley, New York

    Book  Google Scholar 

  • Adell PC, Mion O, Schrimpf RD, Chatry C, Calvel P, Melotte MR (2005) Single event transient propagation through digital optocouplers. IEEE Trans Nucl Sci 52:4

    Article  Google Scholar 

  • Aukerman LW, Millea MF, McColl M (1966) Effects of radiation damage on the behavior of GaAs p–n junctions. IEEE Trans Nucl Sci NS-13:174

    Article  Google Scholar 

  • Baltateanu N, Gheorghiu A (2002) The use of linear electron accelerators in the study of semiconductor and optoelectronic device behavior due to irradiation. In: Proceedings of EPAC 2002, Paris, France, pp 2783–2785

  • Barnes CE (1979) Radiation effects in 1.06 um InGaAs LED’s and Si photodiodes. J Appl Phys 50(8):5242–5247

    Article  Google Scholar 

  • Brelski J, Hiemstra DM (2015) Predicting optocoupler life with radiation damage in various circuits. In: 2015 IEEE radiation effects data workshop (REDW)

  • Dotheyll D et al (1999) Irradiation tests of photodiodes for the ATLAS SCT readout. Nucl Instrum Methods Phys Res A 424:483–494

    Article  Google Scholar 

  • Geoffrey P, Edward A, Robert J (1993) Damage correlations in semiconductors exposed to gamma, electrons and proton radiations. IEEE Trans Nucl Sci 40(6):1372–1379

    Article  Google Scholar 

  • Germanicus R, Dusseau L, Saigne F, Barde S, Ecoffet R, Mion O, Calvel R, Fesquet J, Gasiot J (2002) Analysis of the proton induced permanent damage in an optocoupler. IEEE Trans Nucl Sci 49(3):1421–1425

    Article  Google Scholar 

  • Gorelick JL, Ladbury R (2004) Proton, neutron, and gamma degradation of optocouplers. IEEE Trans Nucl Sci 51:6

    Google Scholar 

  • Green MA (2008) Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Sol Energy Mater Sol Cells 92:1305–1310

    Article  Google Scholar 

  • Hajghassem HS, Brown WD, Williams JG (1992) Modelling the effects of neutron irradiation on LEDs. Solid State Electron 35(1):51–55

    Article  Google Scholar 

  • Ikezawa K, Mitsuishi S, Maruyama T (2004) Proton irradiation experiments of optocouplers. Nucl Instrum Methods Phys Res B 215:449–456

    Article  Google Scholar 

  • Irom F, Allen GR (2016) Measurements of proton displacement damage in several commercial optocouplers. In: 2016 IEEE radiation effects data workshop (REDW)

  • Johnston AH (2003) Radiation damage in light-emitting and laser diodes. IEEE Trans Nucl Sci 50(3):689–703

    Article  Google Scholar 

  • Johnston AH, Miyahira TF (2005) Hardness assurance methods for radiation degradation of optocouplers. IEEE Trans Nucl Sci 52:6

    Article  Google Scholar 

  • Johnston AH, Miyahira TF (2007) LED technologies for optocouplers: fundamental issues and hardness assurance. IEEE Trans Nucl Sci 54:6

    Google Scholar 

  • Johnston AH, Rax BG (2000) Proton damage in linear and digital optocouplers. In: Presented at 1999 RADECS conference; published in IEEE Trans Nucl Sci 47(3):675

    Article  Google Scholar 

  • Johnston AH, Swift GM, Miyahira T, Guertin S, Emonds LD (2001) Single-event upset effects in optocouplers. IEEE Trans Nucl Sci 45(6):2867–2876

    Article  Google Scholar 

  • Keiser G (2013) Optical fiber communications, 5th edn. McGraw-Hill Education, New York

    Google Scholar 

  • Krishnan S, Sanjeev G, Pattabi M (2007) 8 MeV electron irradiation effects in silicon photo-detectors. Nucl Instrum Methods Phys Res B 264:79–82

    Article  Google Scholar 

  • LaBel K et al (1997) Proton-induced transients in optocouplers: in-flight anomalies, ground irradiation test, mitigation and implications. IEEE Trans Nucl Sci NS-44:1895

    Google Scholar 

  • Lischa H, Henschel H, Kohn O, Lennartz W, Schmidt H (1993) Radiation effects in light-emitting diodes, photodiodes, and optocouplers. In: Proceedings of RADECS conference, pp 226–231

  • Mbarki M, Sun GC, Bourgoin JC (2004) Prediction of solar cell degradation in space from the electron–proton equivalence. Semicond Sci Technol 19:1081–1085

    Article  Google Scholar 

  • McMarr PJ, Nelson ME, Hughes H, Delikat KJ (2003) 14-MeV neutron and Co60 gamma testing of a power MOSFET optocoupler. IEEE Trans Nucl Sci 50:6

    Article  Google Scholar 

  • McPherson M (1997) Effects of radiation damage in silicon p–i–n photodiodes. Semicond Sci Technol 12:1187–1194

    Article  Google Scholar 

  • McPherson M (2005) Infrared photoconduction in radiation-damaged silicon diodes. J Opt A Pure Appl Opt 7:S325–S330

    Article  Google Scholar 

  • Miyahira TF, Johnston AH (2002) Trends in optocoupler radiation degradation. IEEE Trans Nucl Sci 49(6):2868–2873

    Article  Google Scholar 

  • Onoda S, Hirao T, Itoh H, Okamoto T (2006) Evaluation of transient current in Si PIN photodiode induced by high-energy charged particles. Proc Sch Eng Sch Inf Sci Tokai Univ 31:1–4

    Google Scholar 

  • Paic G, Reggoug A, Hammer J, Chiadli A (1983) Radiation effects of 14 MeV neutrons on GaAs IREDs and optocoplers. Nucl Instrum Method 205:335–339

    Article  Google Scholar 

  • Pan Y, Inam F, Zhang M, Drabold DA (2008) Atomistic origin of urbach tails in amorphous silicon. J Phys Rev Lett 100(206403):1–4

    Google Scholar 

  • Pattabi M, Krishnan S, Sanjeev G (2007) Studies on the temperature dependence of I–V and C–V characteristics of electron irradiated silicon photo-detectors. Sol Energy Mater Sol Cells 91:1521–1524

    Article  Google Scholar 

  • Rax BG et al (1996) Total dose and displacement damage in optocouplers. IEEE Trans Nucl Sci 43(6):3167–3173

    Article  Google Scholar 

  • Reed RA et al (1998) Emerging optocoupler issues with energetic particle-induced transients and permanent degradation. IEEE Trans Nucl Sci 44(6):2833–2841

    Article  Google Scholar 

  • Reed R et al (2002) Assessing the impact of the space radiation environment on parametric degradation and single event transients in optocouplers. IEEE Trans Nucl Sci 48(6):2202–2209

    Article  Google Scholar 

  • Reed RA, Marshall PW, LaBel KA (2004) Space radiation effects in optocouplers. Int J High Speed Electron Syst 14(02):401–417

    Article  Google Scholar 

  • Shaw GJ et al (1993) Time dependence of radiation-induced generation currents in irradiated lnGaAs photodiodes. Appl Phys 74(3):1629–1635

    Article  Google Scholar 

  • Srour JR, Lo DH (2000) Universal damage factor for radiation-induced dark current in silicon devices. IEEE Trans Nucl Sci 47(6):2451–2459

    Article  Google Scholar 

  • Tauc J (1974) Amorphous and liquid semiconductors. Plenum Press, New York

    Book  Google Scholar 

  • Wolter JH, Khoe GD, Haverkort JE (1999) Polarization independent interferometric switches based on III/V quantum theyll. Bastiaan Hendrik Peter Dorren, Eindhoven

    Google Scholar 

Download references

Funding

The article was funded by Deanship of Scientific Research (DSR), University of Tabuk, Tabuk, Saudi Arabia (Grant no. 175/35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hazem M. El-Hageen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Hageen, H.M. Modeling the performance characteristics of optocoupler under irradiated fields. Multiscale and Multidiscip. Model. Exp. and Des. 3, 33–39 (2020). https://doi.org/10.1007/s41939-019-00058-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41939-019-00058-x

Keywords

Navigation