Skip to main content

Advertisement

Log in

Application of Solid Catalysts with an Ionic Liquid Layer (SCILL) in PEMFCs: From Half-Cell to Full-Cell

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

The advantages of zero emission and high energy efficiency make proton exchange membrane fuel cells (PEMFCs) promising options for future energy conversion devices. To address the cost issue associated with Pt-based electrocatalysts, considerable effort over the past several years has been devoted to catalyst surface modification by means of novel electrocatalysts, such as solid catalysts with an ionic liquid layer (SCILL), which improves both the oxygen reduction reaction (ORR) activity and durability. However, despite numerous reports of dramatically enhanced ORR activity, as determined via the rotating disk electrode (RDE) method, few studies on the application of SCILLs in membrane electrode assembly (MEA) have been reported. The underlying reason lies in the well-acknowledged technological gap between half-cells and full-cells, which originates from the disparate microenvironments for three phase boundaries. Therefore, the objective of this review is to compare the detailed information about improvements in fuel cell performance in both half- and full-cells, thus increasing the fundamental understanding of the mechanism of SCILL. In this review, the concept of SCILL and its origin are introduced, the outstanding electrochemical performance of SCILL catalysts in both RDE and MEA measurements is summarized, and the durability of SCILL catalysts is analysed. Subsequently, proposed mechanisms for the enhanced ORR activity in half-cells, the improved oxygen transport in full-cells and the boosted stability of SCILL catalysts are discussed, while the effects of the IL chemical structure, IL loading as well as the operating conditions on the performance and lifetime of SCILL catalysts are assessed. Finally, comprehensive conclusions are presented, and perspectives are proposed in the last section. It is believed that the new insight presented in this review could provide guidance for the further development of SCILLs in low-Pt PEMFCs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Copyright © 2015, American Chemical Society. Comparison of c E1/2, d ECSA and θOH,ad for PtNiMo/C, PtNiMo/C-[BMIM] [NTF2] and PtNiMo/C-[MTBD] [BETI] catalysts before and after AST in an oxygen-saturated 0.1 M HClO4 solution, while Pt loadings for both types of catalysts are 10 μg cm−2. Reprinted with permission from Ref. [166]. Copyright © 2019, American Chemical Society. LSV curves for e PtFeNi and f PtFeNi-SCILL catalysts before and after AST in an oxygen-saturated 0.1 M HClO4 solution. g Comparison of mass activity and specific activity for PtFeNi and PtFeNi-SCILL catalysts before and after different degrees of degradation. (eg) Reprinted with permission from Ref. [169]. Copyright © 2019, Published by Elsevier B.V. Comparison of h ECSA, i mass activity and j specific activity for JM Pt/C, fct-PtCo/C and fct-PtCo/C-[BMIM] [TFSI] catalysts before and after AST in an oxygen-saturated 0.1 M HClO4 solution. Reprinted with permission from Ref. [170]. Copyright © 2021, Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved. k Current–time chronoamperometric responses for Pt/C, Pt-[BMIM] [NTF2]/C, PtNi-[BMIM] [NTF2]/C and PtNiRu-[BMIM] [NTF2]/C catalysts at 0.7 V in an oxygen-saturated 0.1 M HClO4 solution. Reprinted with permission from Ref. [167] Copyright © 2016, Published by Elsevier B.V

Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Costamagna, P., Srinivasan, S.: Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000. J. Power Sour. 102, 242–252 (2001). https://doi.org/10.1016/s0378-7753(01)00807-2

    Article  CAS  ADS  Google Scholar 

  2. Sun, X.D., Li, Y.S., Li, M.J.: Highly dispersed palladium nanoparticles on carbon-decorated porous nickel electrode: an effective strategy to boost direct ethanol fuel cell up to 202 mW cm–2. ACS Sustain. Chem. Eng. 7, 11186–11193 (2019). https://doi.org/10.1021/acssuschemeng.9b00355

    Article  CAS  Google Scholar 

  3. Sun, X.D., Lou, Y.X., He, Y.L., et al.: A Na-ion direct formate fuel cell converting solar fuel to electricity and hydrogen. J. Power Sour. 499, 229960 (2021). https://doi.org/10.1016/j.jpowsour.2021.229960

    Article  CAS  Google Scholar 

  4. Sun, X.D., Li, Y.S., Xie, C., et al.: Activating triple-phase boundary via building oxygen-electrolyte interfaces to construct high-performance pH-disparate direct liquid fuel cells. Chem. Eng. J. 418, 129480 (2021). https://doi.org/10.1016/j.cej.2021.129480

    Article  CAS  Google Scholar 

  5. Kleen, G., Padgett, E.: Durability-adjusted fuel cell system cost. USDOE. (2021). https://www.hydrogen.energy.gov/pdfs/21001-durability-adjusted-fcs-cost.pdf

  6. Chen, M., Zhao, C., Sun, F.M., et al.: Research progress of catalyst layer and interlayer interface structures in membrane electrode assembly (MEA) for proton exchange membrane fuel cell (PEMFC) system. eTransportation 5, 100075 (2020). https://doi.org/10.1016/j.etran.2020.100075

    Article  CAS  Google Scholar 

  7. Hou, J.B., Yang, M., Ke, C.C., et al.: Platinum-group-metal catalysts for proton exchange membrane fuel cells: From catalyst design to electrode structure optimization. EnergyChem 2, 100023 (2020). https://doi.org/10.1016/j.enchem.2019.100023

    Article  Google Scholar 

  8. Lou, Y.X., Hao, M.S., Li, Y.S.: Machine-learning-assisted insight into the cathode catalyst layer in proton exchange membrane fuel cells. J. Power Sour. 543, 231827 (2022). https://doi.org/10.1016/j.jpowsour.2022.231827

    Article  CAS  Google Scholar 

  9. Deng, S.P., Li, Y.S.: A porous-rib flow field for performance enhancement in proton exchange membrane fuel cells. Energy Convers. Manag. 263, 115707 (2022). https://doi.org/10.1016/j.enconman.2022.115707

    Article  CAS  Google Scholar 

  10. Liu, M.L., Zhao, Z.P., Duan, X.F., et al.: Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv. Mater. 31, 1802234 (2019). https://doi.org/10.1002/adma.201802234

    Article  CAS  Google Scholar 

  11. Wang, Y.J., Long, W.Y., Wang, L.L., et al.: Unlocking the door to highly active ORR catalysts for PEMFC applications: polyhedron-engineered Pt-based nanocrystals. Energy Environ. Sci. 11, 258–275 (2018). https://doi.org/10.1039/C7EE02444D

    Article  CAS  Google Scholar 

  12. Jiang, R.Y., Tung, S.O., Tang, Z., et al.: A review of core-shell nanostructured electrocatalysts for oxygen reduction reaction. Energy Storage Mater. 12, 260–276 (2018). https://doi.org/10.1016/j.ensm.2017.11.005

    Article  Google Scholar 

  13. Wan, C.Z., Duan, X.F., Huang, Y.: Molecular design of single-atom catalysts for oxygen reduction reaction. Adv. Energy Mater. 10, 1903815 (2020). https://doi.org/10.1002/aenm.201903815

    Article  CAS  Google Scholar 

  14. Cheng, X.J., Shen, S.Y., Wei, G.H., et al.: Perspectives on challenges and achievements in local oxygen transport of low Pt proton exchange membrane fuel cells. Adv. Mater. Technol. 7, 2200228 (2022). https://doi.org/10.1002/admt.202200228

    Article  CAS  Google Scholar 

  15. Guo, Y.Q., Yang, D.Z., Li, B., et al.: Effect of dispersion solvents and ionomers on the rheology of catalyst inks and catalyst layer structure for proton exchange membrane fuel cells. ACS Appl. Mater. Interfaces 13, 27119–27128 (2021). https://doi.org/10.1021/acsami.1c07070

    Article  CAS  PubMed  Google Scholar 

  16. Cao, L., Zhao, Z.P., Liu, Z.Y., et al.: Differential surface elemental distribution leads to significantly enhanced stability of PtNi-based ORR catalysts. Matter 1, 1567–1580 (2019). https://doi.org/10.1016/j.matt.2019.07.015

    Article  Google Scholar 

  17. Kong, J., Qin, Y.H., Wang, T.L., et al.: Pd9Au1@Pt/C core-shell catalyst prepared via Pd9Au1-catalyzed coating for enhanced oxygen reduction. Int. J. Hydrog. Energy 45, 27254–27262 (2020). https://doi.org/10.1016/j.ijhydene.2020.07.094

    Article  CAS  Google Scholar 

  18. Luo, L.X., Fu, C.H., Wu, A.M., et al.: Hydrogen-assisted scalable preparation of ultrathin Pt shells onto surfactant-free and uniform Pd nanoparticles for highly efficient oxygen reduction reaction in practical fuel cells. Nano Res. 15, 1892–1900 (2022)

    Article  CAS  ADS  Google Scholar 

  19. Shen, S., Li, L., Fu, C.H., et al.: A facile strategy to boost the active sites of Fe–N–C electrocatalyst for the oxygen reduction reaction. J. Electrochem. Soc. 169(3), 034506 (2022)

    Article  CAS  ADS  Google Scholar 

  20. Yoon, W., Weber, A.Z.: Modeling low-platinum-loading effects in fuel-cell catalyst layers. J. Electrochem. Soc. 158, B1007–B1018 (2011). https://doi.org/10.1149/1.3597644

    Article  CAS  Google Scholar 

  21. Shukla, S., Stanier, D., Saha, M.S., et al.: Analysis of inkjet printed PEFC electrodes with varying platinum loading. J. Electrochem. Soc. 163, F677–F687 (2016). https://doi.org/10.1149/2.1111607jes

    Article  CAS  Google Scholar 

  22. Kongkanand, A., Mathias, M.F.: The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 7, 1127–1137 (2016). https://doi.org/10.1021/acs.jpclett.6b00216

    Article  CAS  PubMed  Google Scholar 

  23. Cetinbas, F.C., Advani, S.G., Prasad, A.K.: A modified agglomerate model with discrete catalyst particles for the PEM fuel cell catalyst layer. J. Electrochem. Soc. 160, F750–F756 (2013). https://doi.org/10.1149/2.017308jes

    Article  CAS  Google Scholar 

  24. Chen, L., Zhang, R.Y., He, P., et al.: Nanoscale simulation of local gas transport in catalyst layers of proton exchange membrane fuel cells. J. Power Sour. 400, 114–125 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.099

    Article  CAS  ADS  Google Scholar 

  25. Wang, C., Cheng, X.J., Lu, J.B., et al.: The experimental measurement of local and bulk oxygen transport resistances in the catalyst layer of proton exchange membrane fuel cells. J. Phys. Chem. Lett. 8, 5848–5852 (2017). https://doi.org/10.1021/acs.jpclett.7b02580

    Article  CAS  PubMed  Google Scholar 

  26. Yu, Z., Carter, R.N., Zhang, J.: Measurements of pore size distribution, porosity, effective oxygen diffusivity, and tortuosity of PEM fuel cell electrodes. Fuel Cells 12, 557–565 (2012). https://doi.org/10.1002/fuce.201200017

    Article  CAS  Google Scholar 

  27. Wang, C., Cheng, X.J., Yan, X.H., et al.: Respective influence of ionomer content on local and bulk oxygen transport resistance in the catalyst layer of PEMFCs with low Pt loading. J. Electrochem. Soc. 166, F239–F245 (2019). https://doi.org/10.1149/2.0401904jes

    Article  CAS  Google Scholar 

  28. Cheng, X.J., Wei, G.H., Wang, C., et al.: Experimental probing of effects of carbon support on bulk and local oxygen transport resistance in ultra-low Pt PEMFCs. Int. J. Heat Mass Transf. 164, 120549 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120549

    Article  CAS  Google Scholar 

  29. Orfanidi, A., Madkikar, P., El-Sayed, H.A., et al.: The key to high performance low Pt loaded electrodes. J. Electrochem. Soc. 164, F418–F426 (2017). https://doi.org/10.1149/2.1621704jes

    Article  CAS  Google Scholar 

  30. Ott, S., Orfanidi, A., Schmies, H., et al.: Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat. Mater. 19, 77–85 (2020). https://doi.org/10.1038/s41563-019-0487-0

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Cheng, X.J., Wang, C., Wei, G.H., et al.: Insight into the effect of pore-forming on oxygen transport behavior in ultra-low Pt PEMFCs. J. Electrochem. Soc. 166, F1055–F1061 (2019). https://doi.org/10.1149/2.0501914jes

    Article  CAS  Google Scholar 

  32. Van Cleve, T., Khandavalli, S., Chowdhury, A., et al.: Dictating Pt-based electrocatalyst performance in polymer electrolyte fuel cells, from formulation to application. ACS Appl. Mater. Interfaces 11, 46953–46964 (2019). https://doi.org/10.1021/acsami.9b17614

    Article  CAS  PubMed  Google Scholar 

  33. Doo, G., Lee, J.H., Yuk, S., et al.: Tuning the ionomer distribution in the fuel cell catalyst layer with scaling the ionomer aggregate size in dispersion. ACS Appl. Mater. Interfaces 10, 17835–17841 (2018). https://doi.org/10.1021/acsami.8b01751

    Article  CAS  PubMed  Google Scholar 

  34. Johnson, L., Ejigu, A., Licence, P., et al.: Hydrogen oxidation and oxygen reduction at platinum in protic ionic liquids. J. Phys. Chem. C 116, 18048–18056 (2012). https://doi.org/10.1021/jp303749k

    Article  CAS  Google Scholar 

  35. Zhang, G.R., Etzold, B.J.M.: Emerging applications of solid catalysts with ionic liquid layer concept in electrocatalysis. Adv. Funct. Mater. 31, 2010977 (2021). https://doi.org/10.1002/adfm.202010977

    Article  CAS  Google Scholar 

  36. Favero, S., Stephens, I.E.L., Titirici, M.M.: Engineering the electrochemical interface of oxygen reduction electrocatalysts with ionic liquids: a review. Adv. Energy Sustain. Res. 2, 2000062 (2021). https://doi.org/10.1002/aesr.202000062

    Article  CAS  Google Scholar 

  37. Zhang, G.R., Etzold, B.J.M.: Ionic liquids in electrocatalysis. J. Energy Chem. 25, 199–207 (2016). https://doi.org/10.1016/j.jechem.2016.01.007

    Article  Google Scholar 

  38. Correia, D.M., Fernandes, L.C., Martins, P.M., et al.: Ionic liquid–polymer composites: a new platform for multifunctional applications. Adv. Funct. Mater. 30, 1909736 (2020). https://doi.org/10.1002/adfm.201909736

    Article  CAS  Google Scholar 

  39. Johnson, K.E.: What’s an ionic liquid? Electrochem. Soc. Interface 16, 38–41 (2007). https://doi.org/10.1149/2.f04071if

    Article  CAS  Google Scholar 

  40. Walden. P. Molecular weights and electrical conductivity of several fused salts. Bull. Acad. Imper. Sci. 1914, 405–422. https://www.semanticscholar.org/paper/Molecular-weights-and-electrical-conductivity-of-Walden/dbe3faa5c3108b751d84c49b14e9f6559215ca85#citing-papers

  41. Steinrück, H.P., Wasserscheid, P.: Ionic liquids in catalysis. Catal. Lett. 145, 380–397 (2015)

    Article  Google Scholar 

  42. Binnemans, K.: Ionic liquid crystals. Chem. Rev. 105, 4148–4204 (2005). https://doi.org/10.1021/cr0400919

    Article  CAS  PubMed  Google Scholar 

  43. Plechkova, N.V., Seddon, K.R.: Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123–150 (2008). https://doi.org/10.1039/b006677j

    Article  CAS  PubMed  Google Scholar 

  44. Herrmann, T., Rössmann, L., Lucas, M., et al.: High-performance supported catalysts with an ionic liquid layer for the selective hydrogenation of acetylene. Chem. Commun. 47, 12310–12312 (2011). https://doi.org/10.1039/c1cc15325k

    Article  CAS  Google Scholar 

  45. Schwab, F., Lucas, M., Claus, P.: Ruthenium-catalyzed selective hydrogenation of benzene to cyclohexene in the presence of an ionic liquid. Angew. Chem. Int. Ed. 50, 10453–10456 (2011). https://doi.org/10.1002/anie.201104959

    Article  CAS  Google Scholar 

  46. Reid, J.E.S.J., Gammons, R.J., Slattery, J.M., et al.: Interactions in water–ionic liquid mixtures: Comparing protic and aprotic systems. J. Phys. Chem. B 121, 599–609 (2017). https://doi.org/10.1021/acs.jpcb.6b10562

    Article  CAS  PubMed  Google Scholar 

  47. Xu, W., Angell, C.A.: Solvent-free electrolytes with aqueous solution-like conductivities. Science 302, 422–425 (2003). https://doi.org/10.1126/science.1090287

    Article  CAS  PubMed  ADS  Google Scholar 

  48. J. Peron, A. Mani, X. Zhao, D. Edwards, M. Adachi, T. Soboleva, Z. Shi, Z. Xie, T. Navessin and S. Holdcroft, J. Membr. Sci., 356, 44–51 (2010). https://doi.org/10.1016/j.memsci.2010.03.025

  49. Shen, S.Y., Han, A.D., Yan, X.H., et al.: Influence of equivalent weight of ionomer on proton conduction behavior in fuel cell catalyst layers. J. Electrochem. Soc. 166, F724–F728 (2019). https://doi.org/10.1149/2.0451912jes

    Article  CAS  Google Scholar 

  50. Olivier-Bourbigou, H., Magna, L., Morvan, D.: Ionic liquids and catalysis: recent progress from knowledge to applications. Appl. Catal. A Gen. 373, 1–56 (2010). https://doi.org/10.1016/j.apcata.2009.10.008

    Article  CAS  Google Scholar 

  51. Díaz, M., Ortiz, A., Ortiz, I.: Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J. Membr. Sci. 469, 379–396 (2014). https://doi.org/10.1016/j.memsci.2014.06.033

    Article  CAS  Google Scholar 

  52. Le Bideau, J., Viau, L., Vioux, A.: Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev. 40, 907–925 (2011). https://doi.org/10.1039/c0cs00059k

    Article  CAS  PubMed  Google Scholar 

  53. Greaves, T.L., Drummond, C.J.: Protic ionic liquids: properties and applications. Chem. Rev. 108, 206–237 (2008). https://doi.org/10.1021/cr068040u

    Article  CAS  PubMed  Google Scholar 

  54. Katayama, Y., Sekiguchi, K., Yamagata, M., et al.: Electrochemical behavior of oxygen/superoxide ion couple in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide room-temperature molten salt. J. Electrochem. Soc. 152, E247–E250 (2005). https://doi.org/10.1149/1.1946530

    Article  CAS  Google Scholar 

  55. Zhang, D., Okajima, T., Matsumoto, F., et al.: Electroreduction of dioxygen in 1-n-alkyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquids. J. Electrochem. Soc. 151, D31–D37 (2004). https://doi.org/10.1149/1.1649748

    Article  CAS  Google Scholar 

  56. Nakagawa, T., Katayama, Y., Miura, T.: Electrode kinetics of oxygen/superoxide ion redox couple in some amide-type ionic liquids. ECS Trans. 50, 159–166 (2013). https://doi.org/10.1149/05011.0159ecst

    Article  CAS  Google Scholar 

  57. Vanhoutte, G., Hojniak, S.D., Bardé, F., et al.: Fluorine-functionalized ionic liquids with high oxygen solubility. RSC Adv. 8, 4525–4530 (2018). https://doi.org/10.1039/c7ra13403g

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  58. Song, T., Morales-Collazo, O., Brennecke, J.F.: Solubility and diffusivity of oxygen in ionic liquids. J. Chem. Eng. Data 64, 4956–4967 (2019). https://doi.org/10.1021/acs.jced.9b00750

    Article  CAS  Google Scholar 

  59. Qiao, M., Tang, C., Tanase, L.C., et al.: Oxygenophilic ionic liquids promote the oxygen reduction reaction in Pt-free carbon electrocatalysts. Mater. Horiz. 4, 895–899 (2017). https://doi.org/10.1039/C7MH00298J

    Article  CAS  Google Scholar 

  60. Gubbins, K.E., Walker, R.D.: The solubility and diffusivity of oxygen in electrolytic solutions. J. Electrochem. Soc. 112, 469–471 (1965). https://doi.org/10.1149/1.2423575

    Article  CAS  ADS  Google Scholar 

  61. Snyder, J., Fujita, T., Chen, M.W., et al.: Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nat. Mater. 9, 904–907 (2010). https://doi.org/10.1038/nmat2878

    Article  CAS  PubMed  ADS  Google Scholar 

  62. Gode, P., Lindbergh, G., Sundholm, G.: In-situ measurements of gas permeability in fuel cell membranes using a cylindrical microelectrode. J. Electroanal. Chem. 518, 115–122 (2002). https://doi.org/10.1016/S0022-0728(01)00698-2

    Article  CAS  Google Scholar 

  63. Parthasarathy, A., Martin, C.R., Srinivasan, S.: Investigations of the O2 reduction reaction at the platinum/Nafion® interface using a solid-state electrochemical cell. J. Electrochem. Soc. 138, 916–921 (1991). https://doi.org/10.1149/1.2085747

    Article  CAS  ADS  Google Scholar 

  64. Parthasarathy, A., Srinivasan, S., Appleby, A.J., et al.: Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion® interface: a microelectrode investigation. J. Electrochem. Soc. 139, 2530–2537 (1992). https://doi.org/10.1149/1.2221258

    Article  CAS  ADS  Google Scholar 

  65. Basura, V., Beattie, P., Holdcroft, S.: Solid-state electrochemical oxygen reduction at Pt|Nafion® 117 and Pt|BAM3G™ 407 interfaces. J. Electroanal. Chem. 458, 1–5 (1998). https://doi.org/10.1016/S0022-0728(98)00338-6

    Article  CAS  Google Scholar 

  66. Basura, V.I., Chuy, C., Beattie, P.D., et al.: Effect of equivalent weight on electrochemical mass transport properties of oxygen in proton exchange membranes based on sulfonated α, β, β-trifluorostyrene (BAM®) and sulfonated styrene-(ethylene-butylene)-styrene triblock (DAIS-analytical) copolymers. J. Electroanal. Chem. 501, 77–88 (2001). https://doi.org/10.1016/S0022-0728(00)00503-9

    Article  CAS  Google Scholar 

  67. Lehtinen, T., Sundholm, G., Holmberg, S., et al.: Electrochemical characterization of PVDF-based proton conducting membranes for fuel cells. Electrochim. Acta 43, 1881–1890 (1998). https://doi.org/10.1016/S0013-4686(97)10005-6

    Article  CAS  Google Scholar 

  68. Haug, A.T., White, R.E.: Oxygen diffusion coefficient and solubility in a new proton exchange membrane. J. Electrochem. Soc. 147, 980–983 (2000). https://doi.org/10.1149/1.1393300

    Article  CAS  ADS  Google Scholar 

  69. Ogumi, Z., Takehara, Z., Yoshizawa, S.: Gas permeation in SPE method: I. Oxygen permeation through Nafion and NEOSEPTA. J. Electrochem. Soc. 131, 769–773 (1984)

    Article  CAS  ADS  Google Scholar 

  70. Büchi, F.N., Wakizoe, M., Srinivasan, S.: Microelectrode investigation of oxygen permeation in perfluorinated proton exchange membranes with different equivalent weights. J. Electrochem. Soc. 143, 927–932 (1996). https://doi.org/10.1149/1.1836560

    Article  ADS  Google Scholar 

  71. Beattie, P.D., Basura, V.I., Holdcroft, S.: Temperature and pressure dependence of O2 reduction at Pt|Nafion® 117 and Pt|BAM® 407 interfaces. J. Electroanal. Chem. 468, 180–192 (1999). https://doi.org/10.1016/S0022-0728(99)00164-3

    Article  CAS  Google Scholar 

  72. Sethuraman, V.A., Khan, S., Jur, J.S., et al.: Measuring oxygen, carbon monoxide and hydrogen sulfide diffusion coefficient and solubility in Nafion membranes. Electrochim. Acta 54, 6850–6860 (2009). https://doi.org/10.1016/j.electacta.2009.06.068

    Article  CAS  Google Scholar 

  73. Mukaddam, M., Litwiller, E., Pinnau, I.: Gas sorption, diffusion, and permeation in Nafion. Macromolecules 49, 280–286 (2016). https://doi.org/10.1021/acs.macromol.5b02578

    Article  CAS  ADS  Google Scholar 

  74. Chlistunoff, J.: Oxygen permeability of cast ionomer films from chronoamperometry on microelectrodes. J. Power Sour. 245, 203–207 (2014). https://doi.org/10.1016/j.jpowsour.2013.06.128

    Article  CAS  ADS  Google Scholar 

  75. Novitski, D., Holdcroft, S.: Determination of O2 mass transport at the Pt|PFSA ionomer interface under reduced relative humidity. ACS Appl. Mater. Interfaces 7, 27314–27323 (2015). https://doi.org/10.1021/acsami.5b08720

    Article  CAS  PubMed  Google Scholar 

  76. Evans, C.M., Singh, M.R., Lynd, N.A., et al.: Improving the gas barrier properties of Nafion via thermal annealing: Evidence for diffusion through hydrophilic channels and matrix. Macromolecules 48, 3303–3309 (2015). https://doi.org/10.1021/acs.macromol.5b00579

    Article  CAS  ADS  Google Scholar 

  77. Benn, E., Uvegi, H., Erlebacher, J.: Characterization of nanoporous metal-ionic liquid composites for the electrochemical oxygen reduction reaction. J. Electrochem. Soc. 162, H759–H766 (2015). https://doi.org/10.1149/2.0161510jes

    Article  CAS  Google Scholar 

  78. Zhang, G.R., Munoz, M., Etzold, B.J.M.: Accelerating oxygen-reduction catalysts through preventing poisoning with non-reactive species by using hydrophobic ionic liquids. Angew. Chem. Int. Ed. 55, 2257–2261 (2016). https://doi.org/10.1002/anie.201508338

    Article  CAS  Google Scholar 

  79. Huang, K., Song, T., Morales-Collazo, O., et al.: Enhancing Pt/C catalysts for the oxygen reduction reaction with protic ionic liquids: The effect of anion structure. J. Electrochem. Soc. 164, F1448–F1459 (2017). https://doi.org/10.1149/2.1071713jes

    Article  CAS  Google Scholar 

  80. Zhang, G.R., Munoz, M., Etzold, B.J.M.: Boosting performance of low temperature fuel cell catalysts by subtle ionic liquid modification. ACS Appl. Mater. Interfaces 7, 3562–3570 (2015). https://doi.org/10.1021/am5074003

    Article  CAS  PubMed  Google Scholar 

  81. Cremer, T., Wibmer, L., Calderón, S.K., et al.: Interfaces of ionic liquids and transition metal surfaces-adsorption, growth, and thermal reactions of ultrathin [C1C1Im][Tf2N] films on metallic and oxidised Ni(111) surfaces. Phys. Chem. Chem. Phys. 14, 5153–5163 (2012). https://doi.org/10.1039/c2cp40278e

    Article  CAS  PubMed  Google Scholar 

  82. Kernchen, U., Etzold, B., Korth, W., et al.: Solid catalyst with ionic liquid layer (SCILL): a new concept to improve selectivity illustrated by hydrogenation of cyclooctadiene. Chem. Eng. Technol. 30, 985–994 (2007). https://doi.org/10.1002/ceat.200700050

    Article  CAS  Google Scholar 

  83. Hintermair, U., Höfener, T., Pullmann, T., et al.: Continuous enantioselective hydrogenation with a molecular catalyst in supported ionic liquid phase under supercritical CO2 flow. ChemCatChem 2, 150–154 (2010). https://doi.org/10.1002/cctc.200900261

    Article  CAS  Google Scholar 

  84. Arras, J., Steffan, M., Shayeghi, Y., et al.: The promoting effect of a dicyanamide based ionic liquid in the selective hydrogenation of citral. Chem. Commun. (2008). https://doi.org/10.1039/b810291k

    Article  Google Scholar 

  85. Sobota, M., Happel, M., Amende, M., et al.: Ligand effects in SCILL model systems: site-specific interactions with Pt and Pd nanoparticles. Adv. Mater. 23, 1004064 (2011). https://doi.org/10.1002/adma.201004064

    Article  CAS  Google Scholar 

  86. Shaari, N., Ahmad, N.N.R., Bahru, R., et al.: Ionic liquid-modified materials as polymer electrolyte membrane and electrocatalyst in fuel cell application: an update. Int. J. Energy Res. 46, 2166–2211 (2022). https://doi.org/10.1002/er.7362

    Article  CAS  Google Scholar 

  87. Gao, J., Guo, Y., Wu, B.B., et al.: Impact of cation selection on proton exchange membrane fuel cell performance with trimethylethyl amide, ethylpyridinium and ethylmethyl imidazolium ionic liquid carried by poly(vinylidene fluoride) membrane as electrolyte. J. Power Sour. 251, 432–438 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.038

    Article  CAS  ADS  Google Scholar 

  88. Ali Rana, U., Forsyth, M., MacFarlane, D.R., et al.: Toward protic ionic liquid and organic ionic plastic crystal electrolytes for fuel cells. Electrochim. Acta 84, 213–222 (2012). https://doi.org/10.1016/j.electacta.2012.03.058

    Article  CAS  Google Scholar 

  89. Hang, N.T.N., Yang, Y., Nam, N.Q.T., et al.: Pt-based multimetal electrocatalysts and potential applications: recent advancements in the synthesis of nanoparticles by modified polyol methods. Crystals 12, 375 (2022). https://doi.org/10.3390/cryst12030375

    Article  CAS  Google Scholar 

  90. Sanij, F.D., Balakrishnan, P., Leung, P., et al.: Advanced Pd-based nanomaterials for electro-catalytic oxygen reduction in fuel cells: a review. Int. J. Hydrog. Energy 46, 14596–14627 (2021). https://doi.org/10.1016/j.ijhydene.2021.01.185

    Article  CAS  Google Scholar 

  91. Osmieri, L., Meyer, Q.: Recent advances in integrating platinum group metal-free catalysts in proton exchange membrane fuel cells. Curr. Opin. Electrochem. 31, 100847 (2022). https://doi.org/10.1016/j.coelec.2021.100847

    Article  CAS  Google Scholar 

  92. Sharma, S., Pollet, B.G.: Support materials for PEMFC and DMFC electrocatalysts: a review. J. Power Sources 208, 96–119 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.011

    Article  CAS  ADS  Google Scholar 

  93. Ramaswamy, N., Gu, W.B., Ziegelbauer, J.M., et al.: Carbon support microstructure impact on high current density transport resistances in PEMFC cathode. J. Electrochem. Soc. 167, 064515 (2020). https://doi.org/10.1149/1945-7111/ab819c

    Article  CAS  ADS  Google Scholar 

  94. Park, Y.C., Tokiwa, H., Kakinuma, K., et al.: Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells. J. Power Sources 315, 179–191 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.091

    Article  CAS  ADS  Google Scholar 

  95. Tuaev, X., Rudi, S., Strasser, P.: The impact of the morphology of the carbon support on the activity and stability of nanoparticle fuel cell catalysts. Catal. Sci. Technol. 6, 8276–8288 (2016). https://doi.org/10.1039/C6CY01679K

    Article  CAS  Google Scholar 

  96. Takeshita, T., Kamitaka, Y., Shinozaki, K., et al.: Evaluation of ionomer coverage on Pt catalysts in polymer electrolyte membrane fuel cells by CO stripping voltammetry and its effect on oxygen reduction reaction activity. J. Electroanal. Chem. 871, 114250 (2020). https://doi.org/10.1016/j.jelechem.2020.114250

    Article  CAS  Google Scholar 

  97. Padgett, E., Yarlagadda, V., Holtz, M.E., et al.: Mitigation of PEM fuel cell catalyst degradation with porous carbon supports. J. Electrochem. Soc. 166, F198–F207 (2019). https://doi.org/10.1149/2.0371904jes

    Article  CAS  Google Scholar 

  98. Iden, H., Ohma, A.: An in situ technique for analyzing ionomer coverage in catalyst layers. J. Electroanal. Chem. 693, 34–41 (2013). https://doi.org/10.1016/j.jelechem.2013.01.026

    Article  CAS  Google Scholar 

  99. Ito, T., Matsuwaki, U., Otsuka, Y., et al.: Three-dimensional spatial distributions of Pt catalyst nanoparticles on carbon substrates in polymer electrolyte fuel cells. Electrochemistry 79, 374–376 (2011). https://doi.org/10.5796/electrochemistry.79.374

    Article  CAS  Google Scholar 

  100. Shinozaki, K., Morimoto, Y., Pivovar, B.S., et al.: Suppression of oxygen reduction reaction activity on Pt-based electrocatalysts from ionomer incorporation. J. Power Sources 325, 745–751 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.062

    Article  CAS  ADS  Google Scholar 

  101. Subbaraman, R., Strmcnik, D., Paulikas, A.P., et al.: Oxygen reduction reaction at three-phase interfaces. ChemPhysChem 11, 2825–2833 (2010). https://doi.org/10.1002/cphc.201000190

    Article  CAS  PubMed  Google Scholar 

  102. Scherzer, A.C., Schneider, P., Herring, P.K., et al.: Modeling the morphological effects of catalyst and ionomer loading on porous carbon supports of PEMFC. J. Electrochem. Soc. 169, 034509 (2022). https://doi.org/10.1149/1945-7111/ac58c2

    Article  CAS  ADS  Google Scholar 

  103. Voloshina, E., Dedkov, Y.: Graphene on metallic surfaces: problems and perspectives. Phys. Chem. Chem. Phys. 14, 13502–13514 (2012). https://doi.org/10.1039/c2cp42171b

    Article  CAS  PubMed  Google Scholar 

  104. Tariq, M., Freire, M.G., Saramago, B., et al.: Surface tension of ionic liquids and ionic liquid solutions. Chem. Soc. Rev. 41, 829–868 (2012). https://doi.org/10.1039/C1CS15146K

    Article  CAS  PubMed  Google Scholar 

  105. Kusoglu, A., Weber, A.Z.: New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 117, 987–1104 (2017). https://doi.org/10.1021/acs.chemrev.6b00159

    Article  CAS  PubMed  Google Scholar 

  106. Yao, W.H., Wang, H.Y., Cui, G.K., et al.: Tuning the hydrophilicity and hydrophobicity of the respective cation and anion: reversible phase transfer of ionic liquids. Angew. Chem. Int. Ed. 55, 7934–7938 (2016). https://doi.org/10.1002/anie.201600419

    Article  CAS  Google Scholar 

  107. Freire, M.G., Santos, L.M.N.B.F., Fernandes, A.M., et al.: An overview of the mutual solubilities of water–imidazolium-based ionic liquids systems. Fluid Phase Equilibria 261, 449–454 (2007). https://doi.org/10.1016/j.fluid.2007.07.033

    Article  CAS  Google Scholar 

  108. Han, A.D., Fu, C.H., Yan, X.H., et al.: Effect of cobalt ion contamination on proton conduction of ultrathin Nafion film. Int. J. Hydrog. Energy 45, 25276–25285 (2020). https://doi.org/10.1016/j.ijhydene.2020.06.205

    Article  CAS  Google Scholar 

  109. Paul, D.K., Karan, K.: Conductivity and wettability changes of ultrathin Nafion films subjected to thermal annealing and liquid water exposure. J. Phys. Chem. C 118, 1828–1835 (2014). https://doi.org/10.1021/jp410510x

    Article  CAS  Google Scholar 

  110. Siroma, Z., Kakitsubo, R., Fujiwara, N., et al.: Depression of proton conductivity in recast Nafion® film measured on flat substrate. J. Power Sources 189, 994–998 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.141

    Article  CAS  ADS  Google Scholar 

  111. Kudo, K., Jinnouchi, R., Morimoto, Y.: Humidity and temperature dependences of oxygen transport resistance of Nafion thin film on platinum electrode. Electrochim. Acta 209, 682–690 (2016). https://doi.org/10.1016/j.electacta.2016.04.023

    Article  CAS  Google Scholar 

  112. Dura, J.A., Murthi, V.S., Hartman, M., et al.: Multilamellar interface structures in Nafion. Macromolecules 42, 4769–4774 (2009). https://doi.org/10.1021/ma802823j

    Article  CAS  ADS  Google Scholar 

  113. Moretto, L.M., Kohls, T., Badocco, D., et al.: Electrochemiluminescence of loaded in Nafion Langmuir-Blodgett films: role of the interfacial ultrathin film. J. Electroanal. Chem. 640, 35–41 (2010). https://doi.org/10.1016/j.jelechem.2009.12.029

    Article  CAS  Google Scholar 

  114. Moretto, L.M., Kohls, T., Chovin, A., et al.: Epifluorescence imaging of electrochemically switchable Langmuir-Blodgett films of Nafion. Langmuir 24, 6367–6374 (2008). https://doi.org/10.1021/la703998e

    Article  CAS  PubMed  Google Scholar 

  115. Bertoncello, P., Ram, M.K., Notargiacomo, A., et al.: Fabrication and physico-chemical properties of Nafion Langmuir–Schaefer films. Phys. Chem. Chem. Phys. 4, 4036–4043 (2002). https://doi.org/10.1039/B202449G

    Article  CAS  Google Scholar 

  116. Bertoncello, P., Ciani, I., Li, F., et al.: Measurement of apparent diffusion coefficients within ultrathin Nafion Langmuir-Schaefer films: comparison of a novel scanning electrochemical microscopy approach with cyclic voltammetry. Langmuir 22, 10380–10388 (2006). https://doi.org/10.1021/la061214i

    Article  CAS  PubMed  Google Scholar 

  117. Nuzzo, R.G., Dubois, L.H., Allara, D.L.: Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers. J. Am. Chem. Soc. 112, 558–569 (1990). https://doi.org/10.1021/ja00158a012

    Article  CAS  Google Scholar 

  118. Marshall, G.M., Bensebaa, F., Dubowski, J.J.: Observation of surface enhanced IR absorption coefficient in alkanethiol based self-assembled monolayers on GaAs(001). J. Appl. Phys. 105, 094310 (2009). https://doi.org/10.1063/1.3122052

    Article  CAS  ADS  Google Scholar 

  119. Knoben, W., Brongersma, S.H., Crego-Calama, M.: Preparation and characterization of octadecanethiol self-assembled monolayers on indium arsenide (100). J. Phys. Chem. C 113, 18331–18340 (2009). https://doi.org/10.1021/jp9069543

    Article  CAS  Google Scholar 

  120. Sobota, M., Wang, X.J., Fekete, M., et al.: Ordering and phase transitions in ionic liquid-crystalline films. ChemPhysChem 11, 1632–1636 (2010). https://doi.org/10.1002/cphc.201000144

    Article  CAS  PubMed  Google Scholar 

  121. Cremer, T., Killian, M., Gottfried, J.M., et al.: Physical vapor deposition of [EMIM][Tf2N]: a new approach to the modification of surface properties with ultrathin ionic liquid films. ChemPhysChem 9, 2185–2190 (2008). https://doi.org/10.1002/cphc.200800300

    Article  CAS  PubMed  Google Scholar 

  122. Cremer, T., Stark, M., Deyko, A., et al.: Liquid/solid interface of ultrathin ionic liquid films: [C1C1Im][Tf2N] and [C8C1Im][Tf2N] on Au(111). Langmuir 27, 3662–3671 (2011). https://doi.org/10.1021/la105007c

    Article  CAS  PubMed  Google Scholar 

  123. Cremer, T., Kolbeck, C., Lovelock, K.R.J., et al.: Towards a molecular understanding of cation-anion interactions: probing the electronic structure of imidazolium ionic liquids by NMR spectroscopy, X-ray photoelectron spectroscopy and theoretical calculations. Chemistry 16, 9018–9033 (2010). https://doi.org/10.1002/chem.201001032

    Article  CAS  PubMed  Google Scholar 

  124. Rietzler, F., Piermaier, M., Deyko, A., et al.: Electrospray ionization deposition of ultrathin ionic liquid films: [C8C1Im]Cl and [C8C1Im][Tf2N] on Au(111). Langmuir 30, 1063–1071 (2014). https://doi.org/10.1021/la404429q

    Article  CAS  PubMed  Google Scholar 

  125. Jiang, C.Y., He, W.J., Huang, J.G., et al.: FT-IR studies of N-hexadecyl-5-iminomethyl-8-hydroxyquinoline Langmuir-Blodgett films. Mater. Chem. Phys. 62, 236–240 (2000). https://doi.org/10.1016/S0254-0584(99)00176-5

    Article  CAS  Google Scholar 

  126. Wu, W.H., Wang, Y.B., Wang, H.S.: Infrared spectroscopic study on thermal behavior of Langmuir–Blodgett films of octadecylammonium octadecanoate and octadecylammonium octadecanoate-d35. Vib. Spectrosc. 46, 158–161 (2008). https://doi.org/10.1016/j.vibspec.2007.12.012

    Article  CAS  Google Scholar 

  127. Sieling, T., Brand, I.: In Situ spectroelectrochemical investigation of potential-dependent changes in an amphiphilic imidazolium-based ionic liquid film on the Au(111) electrode surface. ChemElectroChem 7, 3233–3243 (2020). https://doi.org/10.1002/celc.202000385

    Article  CAS  Google Scholar 

  128. Lovelock, K.R.J.: Influence of the ionic liquid/gas surface on ionic liquid chemistry. Phys. Chem. Chem. Phys. 14, 5071–5089 (2012). https://doi.org/10.1039/c2cp23851a

    Article  CAS  PubMed  Google Scholar 

  129. Steinrück, H.P.: Recent developments in the study of ionic liquid interfaces using X-ray photoelectron spectroscopy and potential future directions. Phys. Chem. Chem. Phys. 14, 5010–5029 (2012). https://doi.org/10.1039/c2cp24087d

    Article  CAS  PubMed  Google Scholar 

  130. Lexow, M., Talwar, T., Heller, B.S.J., et al.: Time-dependent changes in the growth of ultrathin ionic liquid films on Ag(111). Phys. Chem. Chem. Phys. 20, 12929–12938 (2018). https://doi.org/10.1039/c8cp01411f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Uhl, B., Buchner, F., Gabler, S., et al.: Adsorption and reaction of sub-monolayer films of an ionic liquid on Cu(111). Chem. Commun. 50, 8601–8604 (2014). https://doi.org/10.1039/c4cc03203a

    Article  CAS  Google Scholar 

  132. Buchner, F., Forster-Tonigold, K., Uhl, B., et al.: Toward the microscopic identification of anions and cations at the ionic liquid|Ag(111) interface: a combined experimental and theoretical investigation. ACS Nano 7, 7773–7784 (2013). https://doi.org/10.1021/nn4026417

    Article  CAS  PubMed  Google Scholar 

  133. Krischok, S., Eremtchenko, M., Himmerlich, M., et al.: Temperature-dependent electronic and vibrational structure of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide room-temperature ionic liquid surface: a study with XPS, UPS, MIES, and HREELS. J. Phys. Chem. B 111, 4801–4806 (2007). https://doi.org/10.1021/jp067136p

    Article  CAS  PubMed  Google Scholar 

  134. Ulbrich, A., Reinmöller, M., Beenken, W.J.D., et al.: Surface electronic structure of [XMIm]Cl probed by surface-sensitive spectroscopy. ChemPhysChem 13, 1718–1724 (2012). https://doi.org/10.1002/cphc.201100972

    Article  CAS  PubMed  Google Scholar 

  135. Nishi, T., Iwahashi, T., Yamane, H., et al.: Electronic structures of ionic liquids [Cnmim]+BF4− and [Cnmim]+PF6− studied by ultraviolet photoemission, inverse photoemission, and near-edge X-ray absorption fine structure spectroscopies. Chem. Phys. Lett. 455, 213–217 (2008). https://doi.org/10.1016/j.cplett.2008.01.049

    Article  CAS  Google Scholar 

  136. Kanai, K., Nishi, T., Iwahashi, T., et al.: Electronic structures of imidazolium-based ionic liquids. J. Electron Spectrosc. Relat. Phenom. 174, 110–115 (2009). https://doi.org/10.1016/j.elspec.2009.02.004

    Article  CAS  Google Scholar 

  137. Caporali, S., Bardi, U., Lavacchi, A.: X-ray photoelectron spectroscopy and low energy ion scattering studies on 1-buthyl-3-methyl-imidazolium bis(trifluoromethane) sulfonimide. J. Electron Spectrosc. Relat. Phenom. 151, 4–8 (2006). https://doi.org/10.1016/j.elspec.2005.09.010

    Article  CAS  Google Scholar 

  138. Smith, E.F., Rutten, F.J.M., Villar-Garcia, I.J., et al.: Ionic liquids in vacuo: analysis of liquid surfaces using ultra-high-vacuum techniques. Langmuir 22, 9386–9392 (2006). https://doi.org/10.1021/la061248q

    Article  CAS  PubMed  Google Scholar 

  139. Schernich, S., Kostyshyn, D., Wagner, V., et al.: Interactions between the room-temperature ionic liquid [C2C1Im][OTf] and Pd(111), well-ordered Al2O3, and supported Pd model catalysts from IR spectroscopy. J. Phys. Chem. C 118, 3188–3193 (2014). https://doi.org/10.1021/jp5006692

    Article  CAS  Google Scholar 

  140. Schernich, S., Wagner, V., Taccardi, N., et al.: Interface controls spontaneous crystallization in thin films of the ionic liquid [C2C1Im][OTf] on atomically clean Pd(111). Langmuir 30, 6846–6851 (2014). https://doi.org/10.1021/la500842c

    Article  CAS  PubMed  Google Scholar 

  141. Schernich, S., Laurin, M., Lykhach, Y., et al.: Interactions of imidazolium-based ionic liquids with oxide surfaces controlled by alkyl chain functionalization. ChemPhysChem 14, 3673–3677 (2013). https://doi.org/10.1002/cphc.201300792

    Article  CAS  PubMed  Google Scholar 

  142. Law, G., Watson, P.R., Carmichael, A.J., et al.: Molecular composition and orientation at the surface of room-temperature ionic liquids: effect of molecular structure. Phys. Chem. Chem. Phys. 3, 2879–2885 (2001). https://doi.org/10.1039/B101952J

    Article  CAS  Google Scholar 

  143. Yokota, Y., Hara, H., Harada, T., et al.: Structural investigation of ionic liquid/rubrene single crystal interfaces by using frequency-modulation atomic force microscopy. Chem. Commun. 49, 10596–10598 (2013). https://doi.org/10.1039/c3cc45338c

    Article  CAS  Google Scholar 

  144. Page, A.J., Elbourne, A., Stefanovic, R., et al.: 3-Dimensional atomic scale structure of the ionic liquid-graphite interface elucidated by AM-AFM and quantum chemical simulations. Nanoscale 6, 8100–8106 (2014). https://doi.org/10.1039/c4nr01219d

    Article  CAS  PubMed  ADS  Google Scholar 

  145. Schernich, S., Laurin, M., Lykhach, Y., et al.: Functionalization of oxide surfaces through reaction with 1,3-dialkylimidazolium ionic liquids. J. Phys. Chem. Lett. 4, 30–35 (2013). https://doi.org/10.1021/jz301856a

    Article  CAS  PubMed  Google Scholar 

  146. Baldelli, S.: Interfacial structure of room-temperature ionic liquids at the solid-liquid interface as probed by sum frequency generation spectroscopy. J. Phys. Chem. Lett. 4, 244–252 (2013). https://doi.org/10.1021/jz301835j

    Article  CAS  PubMed  Google Scholar 

  147. Santos, C.S., Baldelli, S.: Gas-liquid interface of room-temperature ionic liquids. Chem. Soc. Rev. 39, 2136–2145 (2010). https://doi.org/10.1039/b921580h

    Article  CAS  PubMed  Google Scholar 

  148. Sloutskin, E., Ocko, B.M., Tamam, L., et al.: Surface layering in ionic liquids: an X-ray reflectivity study. J. Am. Chem. Soc. 127, 7796–7804 (2005). https://doi.org/10.1021/ja0509679

    Article  CAS  PubMed  Google Scholar 

  149. Mezger, M., Ocko, B.M., Reichert, H., et al.: Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity. Proc. Natl. Acad. Sci. USA 110, 3733–3737 (2013). https://doi.org/10.1073/pnas.1211749110

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  150. Smith, A.M., Lovelock, K.R.J., Gosvami, N.N., et al.: Quantized friction across ionic liquid thin films. Phys. Chem. Chem. Phys. 15, 15317–15320 (2013). https://doi.org/10.1039/C3CP52779D

    Article  CAS  PubMed  Google Scholar 

  151. Perkin, S.: Ionic liquids in confined geometries. Phys. Chem. Chem. Phys. 14, 5052–5062 (2012). https://doi.org/10.1039/c2cp23814d

    Article  CAS  PubMed  Google Scholar 

  152. Vyalikh, A., Emmler, T., Shenderovich, I., et al.: 2H-solid state NMR and DSC study of isobutyric acid in mesoporous silica materials. Phys. Chem. Chem. Phys. 9, 2249–2257 (2007). https://doi.org/10.1039/b617744a

    Article  CAS  PubMed  Google Scholar 

  153. Chen, S.M., Liu, Y.S., Fu, H.Y., et al.: Unravelling the role of the compressed gas on melting point of liquid confined in nanospace. J. Phys. Chem. Lett. 3, 1052–1055 (2012). https://doi.org/10.1021/jz300225n

    Article  CAS  PubMed  Google Scholar 

  154. Gupta, A.K., Singh, M.P., Singh, R.K., et al.: Low density ionogels obtained by rapid gellification of tetraethyl orthosilane assisted by ionic liquids. Dalton Trans. 41, 6263–6271 (2012). https://doi.org/10.1039/c2dt30318c

    Article  CAS  PubMed  Google Scholar 

  155. Verma, Y.L., Singh, M.P., Singh, R.K.: Ionic liquid assisted synthesis of nano-porous TiO2 and studies on confined ionic liquid. Mater. Lett. 86, 73–76 (2012). https://doi.org/10.1016/j.matlet.2012.07.025

    Article  CAS  Google Scholar 

  156. Lunstroot, K., Driesen, K., Nockemann, P., et al.: Luminescent ionogels based on europium-doped ionic liquids confined within silica-derived networks. Chem. Mater. 18, 5711–5715 (2006). https://doi.org/10.1021/cm061704w

    Article  CAS  Google Scholar 

  157. Echelmeyer, T., Meyer, H.W., van Wüllen, L.: Novel ternary composite electrolytes: Li ion conducting ionic liquids in silica glass. Chem. Mater. 21, 2280–2285 (2009). https://doi.org/10.1021/cm9005184

    Article  CAS  Google Scholar 

  158. Han, K.S., Wang, X.Q., Dai, S., et al.: Distribution of 1-butyl-3-methylimidazolium bistrifluoromethylsulfonimide in mesoporous silica as a function of pore filling. J. Phys. Chem. C 117, 15754–15762 (2013). https://doi.org/10.1021/jp404990q

    Article  CAS  ADS  Google Scholar 

  159. Davenport, M., Rodriguez, A., Shea, K.J., et al.: Squeezing ionic liquids through nanopores. Nano Lett. 9, 2125–2128 (2009). https://doi.org/10.1021/nl900630z

    Article  CAS  PubMed  ADS  Google Scholar 

  160. Lexow, M., Maier, F., Steinrück, H.P.: Ultrathin ionic liquid films on metal surfaces: adsorption, growth, stability and exchange phenomena. Adv. Phys. X 5, 1761266 (2020). https://doi.org/10.1080/23746149.2020.1761266

    Article  CAS  Google Scholar 

  161. Wen, R., Rahn, B., Magnussen, O.M.: Potential-dependent adlayer structure and dynamics at the ionic liquid/Au(111) interface: a molecular-scale in situ video-STM study. Angew. Chem. Int. Ed. 54, 6062–6066 (2015). https://doi.org/10.1002/anie.201501715

    Article  CAS  Google Scholar 

  162. Wang, X.J., Heinemann, F.W., Yang, M., et al.: A new class of double alkyl-substituted, liquid crystalline imidazolium ionic liquids: a unique combination of structural features, viscosity effects, and thermal properties. Chem. Commun. (Camb) (2009). https://doi.org/10.1039/b914939b

    Article  PubMed  Google Scholar 

  163. Snyder, J., Livi, K., Erlebacher, J.: Oxygen reduction reaction performance of [MTBD][beti]-encapsulated nanoporous NiPt alloy nanoparticles. Adv. Funct. Mater. 23, 5494–5501 (2013). https://doi.org/10.1002/adfm.201301144

    Article  CAS  Google Scholar 

  164. Huang, K., Morales-Collazo, O., Chen, Z.C., et al.: The activity enhancement effect of ionic liquids on oxygen reduction reaction catalysts: From rotating disk electrode to membrane electrode assembly. Catalysts 11, 989 (2021). https://doi.org/10.3390/catal11080989

    Article  CAS  Google Scholar 

  165. Zhang, G.R., Wolker, T., Sandbeck, D.J.S., et al.: Tuning the electrocatalytic performance of ionic liquid modified Pt catalysts for the oxygen reduction reaction via cationic chain engineering. ACS Catal. 8, 8244–8254 (2018). https://doi.org/10.1021/acscatal.8b02018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Li, Y.W., Hart, J., Profitt, L., et al.: Sequential capacitive deposition of ionic liquids for conformal thin film coatings on oxygen reduction reaction electrocatalysts. ACS Catal. 9, 9311–9316 (2019). https://doi.org/10.1021/acscatal.9b03157

    Article  CAS  Google Scholar 

  167. Tran, Q.C., Dao, V.D., Kim, H.Y., et al.: Pt-based alloy/carbon black nanohybrid covered with ionic liquid supramolecules as an efficient catalyst for oxygen reduction reactions. Appl. Catal. B Environ. 204, 365–373 (2017). https://doi.org/10.1016/j.apcatb.2016.11.051

    Article  CAS  Google Scholar 

  168. George, M., Zhang, G.R., Schmitt, N., et al.: Effect of ionic liquid modification on the ORR performance and degradation mechanism of trimetallic PtNiMo/C catalysts. ACS Catal. 9, 8682–8692 (2019). https://doi.org/10.1021/acscatal.9b01772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Li, C.J., Huang, B.L., Luo, M.C., et al.: An efficient ultrathin PtFeNi nanowire/ionic liquid conjugate electrocatalyst. Appl. Catal. B Environ. 256, 117828 (2019). https://doi.org/10.1016/j.apcatb.2019.117828

    Article  CAS  Google Scholar 

  170. Liu, W.J., Di, S.X., Wang, F.H., et al.: Ionic liquid modified fct-PtCo/C@ILs as high activity and durability electrocatalyst for oxygen reduction reaction. Int. J. Hydrog. Energy 47, 6312–6322 (2022). https://doi.org/10.1016/j.ijhydene.2021.12.003

    Article  CAS  Google Scholar 

  171. Qiao, M., Ferrero, G.A., Fernández Velasco, L., et al.: Boosting the oxygen reduction electrocatalytic performance of nonprecious metal nanocarbons via triple boundary engineering using protic ionic liquids. ACS Appl. Mater. Interfaces 11, 11298–11305 (2019). https://doi.org/10.1021/acsami.8b18375

    Article  CAS  PubMed  Google Scholar 

  172. Wang, M., Zhang, H.X., Thirunavukkarasu, G., et al.: Ionic liquid-modified microporous ZnCoNC-based electrocatalysts for polymer electrolyte fuel cells. ACS Energy Lett. 4, 2104–2110 (2019). https://doi.org/10.1021/acsenergylett.9b01407

    Article  CAS  Google Scholar 

  173. Wolker, T., Brunnengräber, K., Martinaiou, I., et al.: The effect of temperature on ionic liquid modified Fe−N−C catalysts for alkaline oxygen reduction reaction. J. Energy Chem. 68, 324–329 (2022). https://doi.org/10.1016/j.jechem.2021.11.042

    Article  CAS  Google Scholar 

  174. Khan, A., Lu, X.Y., Aldous, L., et al.: Oxygen reduction reaction in room temperature protic ionic liquids. J. Phys. Chem. C 117, 18334–18342 (2013). https://doi.org/10.1021/jp405759j

    Article  CAS  Google Scholar 

  175. Zhang, Y., Shen, Y., Yuan, J., et al.: Design and synthesis of multifunctional materials based on an ionic-liquid backbone. Angew Chem Int Ed. 45, 5867–5870 (2006). https://doi.org/10.1002/anie.200600120

    Article  CAS  Google Scholar 

  176. Luo, H.M., Baker, G.A., Lee, J.S., et al.: Ultrastable superbase-derived protic ionic liquids. J. Phys. Chem. B 113, 4181–4183 (2009). https://doi.org/10.1021/jp901312d

    Article  CAS  PubMed  Google Scholar 

  177. Kaljurand, I., Koppel, I.A., Kütt, A., et al.: Experimental gas-phase basicity scale of superbasic phosphazenes. J. Phys. Chem. A 111, 1245–1250 (2007). https://doi.org/10.1021/jp066182m

    Article  CAS  PubMed  Google Scholar 

  178. Kolomeitsev, A.A., Koppel, I.A., Rodima, T., et al.: Guanidinophosphazenes: design, synthesis, and basicity in THF and in the gas phase. J. Am. Chem. Soc. 127, 17656–17666 (2005). https://doi.org/10.1021/ja053543n

    Article  CAS  PubMed  Google Scholar 

  179. Richey, F.W., Dyatkin, B., Gogotsi, Y., et al.: Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry. J. Am. Chem. Soc. 135, 12818–12826 (2013). https://doi.org/10.1021/ja406120e

    Article  CAS  PubMed  Google Scholar 

  180. Zhang, H.X., Liang, J.Y., Xia, B.W., et al.: Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells. Front. Chem. Sci. Eng. 13, 695–701 (2019)

    Article  CAS  Google Scholar 

  181. Trombetta, F., Lima, D.W., Fiegenbaum, F., et al.: C16MI.OTf ionic liquid on Pt/C and PtMo/C anodes improves the PEMFC performance. Int. J. Hydrog. Energy 43, 6945–6953 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.104

    Article  CAS  Google Scholar 

  182. Zhao, J., Li, X.G.: A review of polymer electrolyte membrane fuel cell durability for vehicular applications: degradation modes and experimental techniques. Energy Convers. Manag. 199, 112022 (2019). https://doi.org/10.1016/j.enconman.2019.112022

    Article  CAS  Google Scholar 

  183. Chen, J.R., Yan, X.H., Fu, C.H., et al.: Insight into the rapid degradation behavior of nonprecious metal Fe−N−C electrocatalyst-based proton exchange membrane fuel cells. ACS Appl. Mater. Interfaces 11, 37779–37786 (2019). https://doi.org/10.1021/acsami.9b13474

    Article  CAS  PubMed  Google Scholar 

  184. Banham, D., Ye, S.Y., Pei, K.T., et al.: A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Power Sources 285, 334–348 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.047

    Article  CAS  ADS  Google Scholar 

  185. Nie, Y., Wei, Z.D.: Surface-confined Pt-based catalysts for strengthening oxygen reduction performance. Prog. Nat. Sci. Mater. Int. 30, 796–806 (2020). https://doi.org/10.1016/j.pnsc.2020.10.004

    Article  MathSciNet  CAS  Google Scholar 

  186. Subramanian, N.P., Greszler, T.A., Zhang, J., et al.: Pt-oxide coverage-dependent oxygen reduction reaction (ORR) kinetics. J. Electrochem. Soc. 159, B531–B540 (2012). https://doi.org/10.1149/2.088205jes

    Article  CAS  Google Scholar 

  187. Damjanovic, A., Brusic, V.: Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochim. Acta 12, 615–628 (1967). https://doi.org/10.1016/0013-4686(67)85030-8

    Article  CAS  Google Scholar 

  188. Li, Y.W., Intikhab, S., Malkani, A., et al.: Ionic liquid additives for the mitigation of Nafion specific adsorption on platinum. ACS Catal. 10, 7691–7698 (2020). https://doi.org/10.1021/acscatal.0c01243

    Article  CAS  Google Scholar 

  189. Garrick, T.R., Moylan, T.E., Yarlagadda, V., et al.: Characterizing electrolyte and platinum interface in PEM fuel cells using CO displacement. J. Electrochem. Soc. 164, F60–F64 (2016). https://doi.org/10.1149/2.0551702jes

    Article  CAS  Google Scholar 

  190. Tymoczko, J., Calle-Vallejo, F., Colic, V., et al.: Oxygen reduction at a Cu-modified Pt(111) model electrocatalyst in contact with Nafion polymer. ACS Catal. 4, 3772–3778 (2014). https://doi.org/10.1021/cs501037y

    Article  CAS  Google Scholar 

  191. Stamenkovic, V.R., Fowler, B., Mun, B.S., et al.: Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007). https://doi.org/10.1126/science.1135941

    Article  CAS  PubMed  ADS  Google Scholar 

  192. Chen, Q.S., Vidal-Iglesias, F.J., Solla-Gullón, J., et al.: Role of surface defect sites: from Pt model surfaces to shape-controlled nanoparticles. Chem. Sci. 3, 136–147 (2012). https://doi.org/10.1039/C1SC00503K

    Article  CAS  Google Scholar 

  193. Pham-Truong, T.N., Ranjan, C., Randriamahazaka, H., et al.: Nitrogen doped carbon dots embedded in poly(ionic liquid) as high efficient metal-free electrocatalyst for oxygen reduction reaction. Catal. Today 335, 381–387 (2019). https://doi.org/10.1016/j.cattod.2018.12.046

    Article  CAS  Google Scholar 

  194. Appleby, A.J., Yeager, E.B.: Solid polymer electrolyte fuel cells (SPEFCs). Assessment of Research Needs for Advanced Fuel Cells, pp. 137–152. Elsevier, Amsterdam (1986). https://doi.org/10.1016/b978-0-08-033990-0.50009-5

  195. Sakai, T., Takenaka, H., Torikai, E.: Gas diffusion in the dried and hydrated Nafions. J. Electrochem. Soc. 133, 88–92 (1986). https://doi.org/10.1149/1.2108551

    Article  CAS  ADS  Google Scholar 

  196. Owejan, J.P., Owejan, J.E., Gu, W.B.: Impact of platinum loading and catalyst layer structure on PEMFC performance. J. Electrochem. Soc. 160, F824–F833 (2013). https://doi.org/10.1149/2.072308jes

    Article  CAS  Google Scholar 

  197. Ono, Y., Mashio, T., Takaichi, S., et al.: The analysis of performance loss with low platinum loaded cathode catalyst layers. ECS Trans. 28, 69–78 (2010). https://doi.org/10.1149/1.3496614

    Article  CAS  Google Scholar 

  198. Nonoyama, N., Okazaki, S., Weber, A.Z., et al.: Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells. J. Electrochem. Soc. 158, B416–B423 (2011). https://doi.org/10.1149/1.3546038

    Article  CAS  Google Scholar 

  199. Weber, A.Z., Kusoglu, A.: Unexplained transport resistances for low-loaded fuel-cell catalyst layers. J. Mater. Chem. A 2, 17207–17211 (2014). https://doi.org/10.1039/C4TA02952F

    Article  CAS  Google Scholar 

  200. Shen, S.Y., Cheng, X.J., Wang, C., et al.: Exploration of significant influences of the operating conditions on the local O2 transport in proton exchange membrane fuel cells (PEMFCs). Phys. Chem. Chem. Phys. 19, 26221–26229 (2017). https://doi.org/10.1039/c7cp04837h

    Article  CAS  PubMed  Google Scholar 

  201. Cetinbas, F.C., Ahluwalia, R.K., Kariuki, N.N., et al.: Effects of porous carbon morphology, agglomerate structure and relative humidity on local oxygen transport resistance. J. Electrochem. Soc. 167, 013508 (2019). https://doi.org/10.1149/2.0082001jes

    Article  CAS  Google Scholar 

  202. Kudo, K., Morimoto, Y.: Analysis of oxygen transport resistance of Nafion thin film on Pt electrode. ECS Trans. 50, 1487–1494 (2013). https://doi.org/10.1149/05002.1487ecst

    Article  Google Scholar 

  203. Suzuki, T., Kudo, K., Morimoto, Y.: Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell. J. Power Sources 222, 379–389 (2013). https://doi.org/10.1016/j.jpowsour.2012.08.068

    Article  CAS  Google Scholar 

  204. Liang, J.R., Li, Y.S., Wang, R., et al.: Cross-dimensional model of the oxygen transport behavior in low-Pt proton exchange membrane fuel cells. Chem. Eng. J. 400, 125796 (2020). https://doi.org/10.1016/j.cej.2020.125796

    Article  CAS  Google Scholar 

  205. Zheng, W.B., Kim, S.H.: The effects of catalyst layer microstructure and water saturation on the effective diffusivity in PEMFC. J. Electrochem. Soc. 165, F468–F478 (2018). https://doi.org/10.1149/2.0711807jes

    Article  CAS  Google Scholar 

  206. Wang, C., Zhang, Q.L., Shen, S.Y., et al.: The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells. Sci. Rep. 7, 43447 (2017). https://doi.org/10.1038/srep43447

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  207. Zhang, R.Y., Min, T., Chen, L., et al.: Pore-scale and multiscale study of effects of Pt degradation on reactive transport processes in proton exchange membrane fuel cells. Appl. Energy 253, 113590 (2019). https://doi.org/10.1016/j.apenergy.2019.113590

    Article  CAS  Google Scholar 

  208. Cetinbas, F.C., Ahluwalia, R.K.: Agglomerates in polymer electrolyte fuel cell electrodes: part II. Transport characterization. J. Electrochem. Soc. 165, F1059–F1066 (2018). https://doi.org/10.1149/2.0301813jes

    Article  CAS  Google Scholar 

  209. Zhu, F.J., Luo, L.X., Wu, A.M., et al.: Improving the high-current-density performance of PEMFC through much enhanced utilization of platinum electrocatalysts on carbon. ACS Appl. Mater. Interfaces 12, 26076–26083 (2020). https://doi.org/10.1021/acsami.0c06981

    Article  CAS  PubMed  Google Scholar 

  210. Shaik, S., Kim, H.J., Choi, S.I.: Utilization of room temperature ionic liquids in the synthesis of Pt-based catalysts toward oxygen reduction reaction. APL Mater. 9, 020702 (2021). https://doi.org/10.1063/5.0035999

    Article  CAS  ADS  Google Scholar 

  211. Fan, L.X., Zhao, J.J., Luo, X.B., et al.: Comparison of the performance and degradation mechanism of PEMFC with Pt/C and Pt black catalyst. Int. J. Hydrog. Energy 47, 5418–5428 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.135

    Article  CAS  Google Scholar 

  212. Evans, R.G., Klymenko, O.V., Hardacre, C., et al.: Oxidation of N, N, N’, N’-tetraalkyl-para-phenylenediamines in a series of room temperature ionic liquids incorporating the bis(trifluoromethylsulfonyl)imide anion. J. Electroanal. Chem. 556, 179–188 (2003). https://doi.org/10.1016/S0022-0728(03)00343-7

    Article  CAS  Google Scholar 

  213. Buzzeo, M.C., Evans, R.G., Compton, R.G.: Non-haloaluminate room-temperature ionic liquids in electrochemistry: a review. ChemPhysChem 5, 1106–1120 (2004). https://doi.org/10.1002/cphc.200301017

    Article  CAS  PubMed  Google Scholar 

  214. Darling, R.M., Meyers, J.P.: Kinetic model of platinum dissolution in PEMFCs. J. Electrochem. Soc. 150, A1523–A1527 (2003). https://doi.org/10.1149/1.1613669

    Article  CAS  Google Scholar 

  215. Cherevko, S., Kulyk, N., Mayrhofer, K.J.J.: Durability of platinum-based fuel cell electrocatalysts: dissolution of bulk and nanoscale platinum. Nano Energy 29, 275–298 (2016). https://doi.org/10.1016/j.nanoen.2016.03.005

    Article  CAS  Google Scholar 

  216. Katsounaros, I., Cherevko, S., Zeradjanin, A.R., et al.: Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem. Int. Ed. 53, 102–121 (2014). https://doi.org/10.1002/anie.201306588

    Article  CAS  Google Scholar 

  217. López-Cudero, A., Cuesta, A., Gutiérrez, C.: Potential dependence of the saturation CO coverage of Pt electrodes: the origin of the pre-peak in CO-stripping voltammograms. Part 1: Pt(111). J. Electroanal. Chem. 579, 1–12 (2005). https://doi.org/10.1016/j.jelechem.2005.01.018

    Article  CAS  Google Scholar 

  218. Urchaga, P., Baranton, S., Coutanceau, C., et al.: Electro-oxidation of COchem on Pt nanosurfaces: solution of the peak multiplicity puzzle. Langmuir 28, 3658–3663 (2012). https://doi.org/10.1021/la202913b

    Article  CAS  PubMed  Google Scholar 

  219. Cherevko, S., Zeradjanin, A.R., Keeley, G.P., et al.: A comparative study on gold and platinum dissolution in acidic and alkaline media. J. Electrochem. Soc. 161, H822–H830 (2014). https://doi.org/10.1149/2.0881412jes

    Article  CAS  Google Scholar 

  220. Topalov, A.A., Cherevko, S., Zeradjanin, A.R., et al.: Towards a comprehensive understanding of platinum dissolution in acidic media. Chem. Sci. 5, 631–638 (2014). https://doi.org/10.1039/C3SC52411F

    Article  CAS  Google Scholar 

  221. Ramya, K.R., Kumar, P., Kumar, A., et al.: Interplay of phase separation, tail aggregation, and micelle formation in the nanostructured organization of hydrated imidazolium ionic liquid. J. Phys. Chem. B 118, 8839–8847 (2014). https://doi.org/10.1021/jp504270b

    Article  CAS  PubMed  Google Scholar 

  222. Smith, A.M., Lovelock, K.R.J., Perkin, S.: Monolayer and bilayer structures in ionic liquids and their mixtures confined to nano-films. Faraday Discuss. 167, 279–292 (2013). https://doi.org/10.1039/c3fd00075c

    Article  CAS  PubMed  ADS  Google Scholar 

  223. Gui, A.L., Endres, F., Wittstock, G.: Influence of chemical structure and temperature on oxygen reduction reaction and transport in ionic liquids. Z. Phys. Chem. 231, 1077–1092 (2017). https://doi.org/10.1515/zpch-2016-0859

    Article  CAS  Google Scholar 

  224. Meier, J.C., Galeano, C., Katsounaros, I., et al.: Degradation mechanisms of Pt/C fuel cell catalysts under simulated start–stop conditions. ACS Catal. 2, 832–843 (2012). https://doi.org/10.1021/cs300024h

    Article  CAS  Google Scholar 

  225. Zimudzi, T.J., Hickner, M.A.: Signal enhanced FTIR analysis of alignment in Nafion thin films at SiO2 and Au interfaces. ACS Macro Lett. 5, 83–87 (2016). https://doi.org/10.1021/acsmacrolett.5b00800

    Article  CAS  PubMed  Google Scholar 

  226. Nagao, Y.: Highly oriented sulfonic acid groups in a Nafion thin film on Si substrate. J. Phys. Chem. C 117, 3294–3297 (2013). https://doi.org/10.1021/jp311622p

    Article  CAS  Google Scholar 

  227. You, J.B., Zheng, Z.F., Luo, L.X., et al.: Microstructures and proton networks of ionomer film on the surface of platinum single atom catalyst in polymer electrolyte membrane fuel cells. J. Phys. Chem. C 125, 24240–24248 (2021). https://doi.org/10.1021/acs.jpcc.1c07670

    Article  CAS  Google Scholar 

  228. Jinnouchi, R., Kudo, K., Kitano, N., et al.: Molecular dynamics simulations on O2 permeation through Nafion ionomer on platinum surface. Electrochim. Acta 188, 767–776 (2016). https://doi.org/10.1016/j.electacta.2015.12.031

    Article  CAS  Google Scholar 

  229. Cheng, X.J., You, J.B., Shen, S.Y., et al.: An ingenious design of nanoporous Nafion film for enhancing the local oxygen transport in cathode catalyst layers of PEMFCs. Chem. Eng. J. 439, 135387 (2022). https://doi.org/10.1016/j.cej.2022.135387

    Article  CAS  Google Scholar 

  230. Doo, G., Yuk, S., Lee, J.H., et al.: Nano-scale control of the ionomer distribution by molecular masking of the Pt surface in PEMFCs. J. Mater. Chem. A 8, 13004–13013 (2020). https://doi.org/10.1039/C9TA14002F

    Article  CAS  Google Scholar 

  231. Zhao, J., Shahgaldi, S., Ozden, A., et al.: Effect of catalyst deposition on electrode structure, mass transport and performance of polymer electrolyte membrane fuel cells. Appl. Energy 255, 113802 (2019). https://doi.org/10.1016/j.apenergy.2019.113802

    Article  CAS  Google Scholar 

  232. Chang, T.M., Dang, L.X., Devanathan, R., et al.: Structure and dynamics of N, N-diethyl-N-methylammonium triflate ionic liquid, neat and with water, from molecular dynamics simulations. J. Phys. Chem. A 114, 12764–12774 (2010). https://doi.org/10.1021/jp108189z

    Article  CAS  PubMed  Google Scholar 

  233. Hayes, R., Imberti, S., Warr, G.G., et al.: How water dissolves in protic ionic liquids. Angew. Chem. Int. Ed. 51, 7468–7471 (2012). https://doi.org/10.1002/anie.201201973

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (2021YFB4001303).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuiyun Shen or Junliang Zhang.

Ethics declarations

Conflict of interest

There are no financial or nonfinancial interests that are directly or indirectly related to the work submitted for publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Wei, G., Luo, L. et al. Application of Solid Catalysts with an Ionic Liquid Layer (SCILL) in PEMFCs: From Half-Cell to Full-Cell. Electrochem. Energy Rev. 6, 32 (2023). https://doi.org/10.1007/s41918-023-00195-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-023-00195-5

Keywords

Navigation