Skip to main content
Log in

An efficient class of estimators based on ranked set sampling

  • Original Research
  • Published:
Life Cycle Reliability and Safety Engineering Aims and scope Submit manuscript

Abstract

This article proposes an efficient class of estimators for population mean in ranked set sampling framework which includes the usual mean estimator, Upadhyaya et al. (1985) type estimator, Samawi and Muttlak (1996) estimator, Yu and Lam (1997) estimator, Khoshnevisan et al. (2007) type estimators, Bouza (2008) estimator, Koyuncu and Kadilar (2009) type estimators, Kadilar et al. (2009) estimator, Al-Omari et al. (2009) estimator, Singh et al. (2014) estimator, Mehta and Mandowara (2016) estimators, Mandowara and Mehta (2016) estimators and Bhushan and Kumar (2020a; b) estimators. The bias and mean square error of the proposed estimators are reported up to first order of approximation. It has been proven, both theoretically and empirically, that the proposed estimators provide more accurate results than the existing estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Omari AI, Jemain AA, Ibrahim K (2009) New ratio estimators of the mean using simple random sampling and ranked set sampling methods. Revista Invest Oper 30(2):97–108

    MathSciNet  MATH  Google Scholar 

  • Bouza CN (2008) Ranked set sampling for the product estimator. Revista Invest Oper 29(3):201–206

    MathSciNet  MATH  Google Scholar 

  • Bhushan S, Kumar A (2020) On optimal classes estimators under ranked set sampling. Commun Statist Theory Methods. https://doi.org/10.1080/03610926.2020.1777431

    Article  Google Scholar 

  • Bhushan S, Kumar A (2020) Log type estimators of population mean under ranked set sampling. Predict Anal Using Statist Big Data Concepts Modell 28:47–74. https://doi.org/10.2174/9789811490491120010007

    Article  Google Scholar 

  • Bhushan S, Kumar A (2021) Novel log type class of estimators under ranked set sampling. Sankhya B. https://doi.org/10.1007/s13571-021-00265-y

    Article  Google Scholar 

  • Bhushan S, Kumar A, Lone SA (2021) On some novel classes of estimators under ranked set sampling. AEJ. https://doi.org/10.1016/j.aej.2021.11.001

    Article  Google Scholar 

  • Bhushan S, Kumar A, Singh S, Kumar S (2021) An improved class of estimators of population mean under simple random sampling. Philippine Statist 70(1):33–47

    Google Scholar 

  • Dell TR, Clutter JL (1972) Ranked set sampling theory with order statistics background. Biometrics 28:545–555

    Article  Google Scholar 

  • Kadilar C, Cingi H (2003) Ratio estimators in stratified random sampling. Biomet J 45:218–225

    Article  MathSciNet  Google Scholar 

  • Kadilar C, Unyazici Y, Cingi H (2009) Ratio estimator for the population mean using ranked set sampling. Stat Papers 50:301–309

    Article  MathSciNet  Google Scholar 

  • Khoshnevisan M, Singh R, Chauhan P, Sawan N, Smarandache F (2007) A general family of estimators for estimating population mean using known value of some population parameter(s). Far East J Theoret Stat 22:181–191

    MathSciNet  MATH  Google Scholar 

  • Koyuncu N, Kadilar C (2009) Ratio and product estimator in stratified random sampling. J Statist Plann Inference 139:2552–2558

    Article  MathSciNet  Google Scholar 

  • McIntyre GA (1952) A method of unbiased selective sampling using ranked set. Australian J Agric Res 3:385–390

    Article  Google Scholar 

  • Mehta N, Mandowara VL (2016) A modified ratio-cum-product estimator of finite population mean using ranked set sampling. Commun Statis Theor Methods 45(2):267–276

    Article  MathSciNet  Google Scholar 

  • Mandowara VL, Mehta N (2016) On the improvement of product method of estimation in ranked set sampling. Chilean J Statist 7(1):43–53

    MathSciNet  MATH  Google Scholar 

  • Muttlak HA (1995) Parameter estimation in simple linear regression using ranked set sampling. Biomet J 37(7):799–810

    Article  Google Scholar 

  • Prasad B (1989) Some improved ratio type estimators of population mean and ratio in finite population sample surveys. Commun Stat Theory Methods 18:379–392

    Article  MathSciNet  Google Scholar 

  • Samawi HM, Muttlak HA (1996) Estimation of ratio using ranked set sampling. Biomet J 38:753–764

    Article  Google Scholar 

  • Saini M, Kumar A (2016) Ratio estimators for the finite population mean under simple random sampling and ranked set sampling. Int J Syst Assur Eng Manag 8(2):488–492

    Article  Google Scholar 

  • Sarndal CE, Swensson B, Wretman J (2003) Model assisted survey sampling. Springer-Verlag, New York

    MATH  Google Scholar 

  • Singh HP, Espejo MR (2003) On linear regression and ratio estimator using coefficient of variation of auxiliary variate. Statistician 52(1):59–67

    MathSciNet  Google Scholar 

  • Singh HP, Kakran MS (1993) A modified ratio estimator using known coefficient of kurtosis of auxiliary character. In: Singh S (ed) Advanced Sampling Theory with Applications, vol 2. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Singh HP, Tailor R, Singh S (2014) General procedure for estimating the population mean using ranked set sampling. J Statist Comput Simul 84(5):931–945

    Article  MathSciNet  Google Scholar 

  • Sisodia BVS, Dwivedi VK (1981) A modified ratio estimator using coefficient of variation of auxiliary variable. J Indian Soc Agric Stat 33:13–18

    Google Scholar 

  • Singh HP, Horn S (1998) An alternative estimator for multi-character surveys. Metrika 48:99–107

    MathSciNet  MATH  Google Scholar 

  • Takahasi K, Wakimoto K (1968) On unbiased estimates of the population mean based on the sample stratified by means of ordering. Annal Instit Statist Math 20:1–31

    Article  Google Scholar 

  • Upadhyaya LN, Singh HP, Vos JWE (1985) On the estimations of population means and ratios using supplementary information. Statist Neerlandica 39(3):309–318

    Article  MathSciNet  Google Scholar 

  • Upadhyaya LN, Singh HP (1999) Use of transformed auxiliary variable in estimating the finite population mean. Biomet J 41:627–636

    Article  MathSciNet  Google Scholar 

  • Yu LH, Lam K (1997) Regression estimator in ranked set sampling. Biometrics 53:1070–1080

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The MSE of the existing estimators is given below.

$$\begin{aligned} MSE(t_{m})&={\bar{Y}}^2\Delta _{2,0} \end{aligned}$$
(A.1)
$$\begin{aligned} MSE(t_{r})&={\bar{Y}}^2\bigg [\Delta _{2,0}+\Delta _{0,2}-2\Delta _{1,1}\bigg ] \end{aligned}$$
(A.2)
$$\begin{aligned} MSE(t_{lr})&={\bar{Y}}^2\left[ \Delta _{2,0}+{\beta }^2\Delta _{0,2}-2\beta \Delta _{1,1}\right] \end{aligned}$$
(A.3)
$$\begin{aligned} {min}MSE(t_{lr})&={\bar{Y}}^2\bigg [\Delta _{2,0}-\frac{\Delta _{1,1}^2}{\Delta _{0,2}}\bigg ] \end{aligned}$$
(A.4)
$$\begin{aligned} MSE(t_{kc})&= {\bar{Y}}^2 \bigg [(k-1)^2+\Delta _{0,2}+k^2\Delta _{2,0}-2k\Delta _{1,1}\bigg ] \end{aligned}$$
(A.5)
$$\begin{aligned} {min}MSE(t_{kc})&={\bar{Y}}^2\bigg [(k^*-1)^2+\Delta _{0,2}+k^{*2}\Delta _{2,0}-2k^{*}\Delta _{1,1}\bigg ] \end{aligned}$$
(A.6)
$$\begin{aligned} MSE(t_{o_i})&={\bar{Y}}^2\Delta _{2,0}+K_i^2{\bar{X}}^2\Delta _{0,2}-2K_i{\bar{X}}{\bar{Y}}\Delta _{1,1},~i=1,3 \end{aligned}$$
(A.7)
$$\begin{aligned} MSE(t_s)&={\bar{Y}}^2 \left[ \begin{array}{l} (1+\lambda ^2_1+\lambda ^2_2)+\lambda ^2_1\Delta _{2,0}+\lambda ^2_2\{ \Delta _{2,0}+g(2g+1)\theta ^2\alpha ^2\Delta _{0,2} \}\\ +2\lambda _1\lambda _2\{\Delta _{2,0}-2\theta g\alpha \Delta _{1,1}+\frac{g(g+1)}{2}\theta ^2\alpha ^2\Delta _{0,2}\}\\ -2\lambda _2\{\frac{g(g+1)}{2}\theta ^2\alpha ^2\Delta _{0,2}-g\theta \alpha \Delta _{1,1}\}-2(\lambda _1+\lambda _2)+2\lambda _1\lambda _2 \end{array} \right] \end{aligned}$$
(A.8)
$$\begin{aligned} {min}MSE(t_s)_I&={\bar{Y}}^2\bigg [\Delta _{2,0}-\frac{\Delta _{1,1}^2}{\Delta _{0,2}}\bigg ],~\text {when}~\lambda _1+\lambda _2=1 \end{aligned}$$
(A.9)
$$\begin{aligned} {min}MSE(t_s)_{II}&={\bar{Y}}^2\left[ 1-\frac{\big (\begin{array}{l}B_s-2C_sD_s+A_sD_s^2 \end{array} \big )}{\big (A_sB_s-C_s^2\big )}\right] ~\text {when}~\lambda _1+\lambda _2 \ne 1 \end{aligned}$$
(A.10)
$$\begin{aligned} MSE(t_{mm_i})&={\bar{Y}}^2\big [\Delta _{2,0}+\delta _i^2\Delta _{0,2}-2\delta _i\Delta _{1,1}\big ],~i=1,2,3 \end{aligned}$$
(A.11)
$$\begin{aligned} MSE(t_{mm_4})&={\bar{Y}}^2\big [\Delta _{2,0}+\delta _4^2\Delta _{0,2}+2\delta _4\Delta _{1,1}\big ] \end{aligned}$$
(A.12)
$$\begin{aligned} MSE(t_{mm_5})&={\bar{Y}}^2\big [\Delta _{2,0}+(1-2\phi )^2t_3^2\Delta _{0,2}+2(1-2\phi )t_3\Delta _{1,1}\big ] \end{aligned}$$
(A.13)
$$\begin{aligned} minMSE(t_{mm_5})&={\bar{Y}}^2\big [\Delta _{2,0}+(1-2\phi _0)^2t_3^2\Delta _{0,2}+2(1-2\phi _0)t_3\Delta _{1,1}\big ] \end{aligned}$$
(A.14)
$$\begin{aligned} MSE(t_{sk_i})&={\bar{Y}}^2\left[ \Delta _{2,0}+I_i^2\Delta _{0,2}-2I_i\Delta _{1,1}\right] ,~i=1,3 \end{aligned}$$
(A.15)
$$\begin{aligned} MSE(t_{1})&={\bar{Y}}^2(\alpha _{1}-1)^2+ {\bar{Y}}^2\alpha _1^2\Delta _{0,2}+{\beta _1}^2{\bar{X}}^2\nu ^2\Delta _{2,0}+2\alpha _1\beta _1{\bar{X}}{\bar{Y}}\nu \Delta _{1,1} \end{aligned}$$
(A.16)
$$\begin{aligned} MSE(t_{2})&={\bar{Y}}^2\left[ \begin{array}{l} 1+\alpha ^2_2\left( 1+\Delta _{0,2}+ \beta _2(2\beta _2+1)\nu ^2\Delta _{2,0}-4\beta _2\nu \Delta _{1,1} \right) \\ -2\alpha _2 \left( 1-\beta _2\nu \Delta _{1,1}+\frac{\beta _2(\beta _2+1)}{2}\nu ^2\Delta _{2,0} \right) \end{array} \right] \end{aligned}$$
(A.17)
$$\begin{aligned} MSE(t_{3})&={\bar{Y}}^2\left[ \begin{array}{l} 1+\alpha ^2_{3}\left( 1+ \Delta _{0,2}+3\beta ^2_3\nu ^2\Delta _{2,0}-4\beta _3\nu \Delta _{1,1} \right) \\ -2\alpha _3 \left( 1+\beta ^2_3\nu ^2\Delta _{2,0}-\beta _3\nu \Delta _{1,1}\right) \end{array}\right] \end{aligned}$$
(A.18)
$$\begin{aligned} minMSE(t_i)&={\bar{Y}}^2\left[ 1-\alpha _{i(opt)}\right] ={\bar{Y}}^2\left[ 1-\frac{Q_i^2}{P_i}\right] ,~i=1,3 \end{aligned}$$
(A.19)
$$\begin{aligned} minMSE(t_2)&={\bar{Y}}^2\left[ 1-\frac{Q_2^2}{P_2}\right] \end{aligned}$$
(A.20)
$$\begin{aligned} MSE(t_{g_1})&={\bar{Y}}^2\left[ \Delta _{2,0}+\eta ^2\Delta _{0,2}+2\eta \Delta _{1,1}\right] \end{aligned}$$
(A.21)
$$\begin{aligned} MSE(t_{g_2})&={\bar{Y}}^2\left[ \Delta _{2,0}+\nu ^2\zeta ^2\Delta _{0,2}+2\zeta \nu \Delta _{1,1}\right] \end{aligned}$$
(A.22)
$$\begin{aligned} minMSE(t_{g_i})&={\bar{Y}}^2\left[ \Delta _{2,0}-\frac{\Delta _{1,1}^2}{\Delta _{0,2}}\right] ,~i=1,2 \end{aligned}$$
(A.23)

The optimum values of constants involved in the estimators can be obtained by minimizing with respect to the constants as

$$\begin{aligned} \beta _{(opt)}&=\frac{{R}{\Delta }_{1,1}}{{\Delta }_{0,2}} \end{aligned}$$
(A.24)
$$\begin{aligned} k_{(opt)}&=\frac{\big (1+\Delta _{1,1}\big )}{\big (1+\Delta _{2,0}\big )}=k^* (\text {say}) \end{aligned}$$
(A.25)
$$\begin{aligned} \lambda _{1_{(opt)}}&=1-\frac{\Delta _{1,1}}{g\theta \alpha \Delta _{0,2}},~\text {when}~ \lambda _1+\lambda _2=1 \end{aligned}$$
(A.26)
$$\begin{aligned} \lambda _{1_{(opt)}}&=\frac{[B_s-C_sD_s]}{[A_sB_s-C_s^2]},~\text {when}~ \lambda _1+\lambda _2\ne 1 \end{aligned}$$
(A.27)
$$\begin{aligned} \lambda _{2_{(opt)}}&=\frac{[A_sD_s-C_s]}{[A_sB_s-C_s^2]} \end{aligned}$$
(A.28)
$$\begin{aligned} \phi _{(opt)}&=\frac{(t_3+k)}{2t_3}=\phi _0(say) \end{aligned}$$
(A.29)
$$\begin{aligned} \alpha _{i(opt)}&=\frac{Q_i}{P_i},~i=1,2,3 \end{aligned}$$
(A.30)
$$\begin{aligned} \beta _{1(opt)}&=-\frac{{\bar{Y}}}{{\bar{X}}}\frac{\Delta _{1,1}}{\Delta _{2,0}}\alpha _{1(opt)} \end{aligned}$$
(A.31)
$$\begin{aligned} \beta _{i(opt)}&=\frac{\Delta _{1,1}}{\Delta _{2,0}},~i=2,3 \end{aligned}$$
(A.32)
$$\begin{aligned} \eta _{(opt)}&=-\frac{\Delta _{1,1}}{\Delta _{0,2}}=\zeta _{(opt)} \end{aligned}$$
(A.33)

where \(K_i={{\bar{Y}}}/{({\bar{X}}+q_i)},~i=1,3\)\(A_s=1+\Delta _{2,0}\)\(B_s=1+\Delta _{2,0}+g(2g+1)\theta ^2\alpha ^2\Delta _{0,2}-4g\theta \alpha \Delta _{1,1}\)\(C_s=1+\Delta _{2,0}-2g\theta \alpha \Delta _{1,1}+\{{g(g+1)}/{2}\}\theta ^2\alpha ^2\Delta _{0,2}\)\(D_s=1+\{{g(g+1)}/{2}\}\theta ^2\alpha ^2\Delta _{0,2}-g\theta \alpha \Delta _{1,1}\)\(I_i={({\bar{X}}+q_i)}/{(2{\bar{X}}+q_i)^2},~i=1,3\)\(\delta _1={\bar{X }}/{({\bar{X}}+C_x)},~ \delta _2={{\bar{X}}}/{(\bar{X }+\beta _{2}(x))}\)\(\delta _3=\delta _4=t_3={{\bar{X}}C_x}/{(\bar{X }C_x+\beta _{2}(x))}\)\(P_i=1+\Delta _{0,2}-{\Delta _{1,1}^2}/{\Delta _{2,0}},~i=1,3\)\(Q_i=1,~i=1,3\)\(P_2=1+\Delta _{0,2}+\nu \Delta _{1,1}-{2\Delta _{1,1}^2}/{\Delta _{2,0}}\)\(Q_2=1+{\nu \Delta _{1,1}}/{2}-{\Delta _{1,1}^2}/{2\Delta _{2,0}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhushan, S., Kumar, A. An efficient class of estimators based on ranked set sampling. Life Cycle Reliab Saf Eng 11, 39–48 (2022). https://doi.org/10.1007/s41872-021-00183-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41872-021-00183-y

Keywords

Mathematics Subject Classification

Navigation