Skip to main content
Log in

Reducing the description of arbitrary wave field converters to tensor form

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

It is shown that solving problems of radio holography, including diagnostics of subsurface objects, actualizes the development of new approaches to solving classical problems of mathematical physics, in particular, the boundary value problem, on the solution of which the description of wave propagation is based. It is shown that the boundary value problem of mathematical physics, corresponding to the theoretical description of the propagation of wave disturbances, can be solved without using the apparatus of Green's functions (fundamental solutions of the wave equation). The basis for this is the description of wave propagation in terms of spatial frequency spectra, based directly on the analysis of the wave equation. This approach makes it possible to justify the use of the concept of a finite Green's function, which remains bounded everywhere. The expediency of using the concept of “wave field converter” is substantiated. It is proven that by excluding inhomogeneous (damped) waves from consideration, the description of an arbitrary radiation converter can be reduced to a discrete (tensor) form. The possibilities of practical use of the proposed approach are discussed, including for the diagnosis of subsurface objects using radio holography methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang X, Kang H, Zuo Y, Lou Z, Wang Y, Qian Y (2019) Near-field radio holography of slant-axis terahertz antennas. IEEE Trans Terahertz Sci Technol. https://doi.org/10.1109/TTHZ.2019.2958066

    Article  Google Scholar 

  2. Xu L, Zuo Y (2017) Design study on the digital correlator using for radio holography. Springer, Berlin. https://doi.org/10.1007/978-3-319-49568-2_54

    Book  Google Scholar 

  3. Igarashi K, Pavelyev A, Hocke K, Pavelyev D, Kucherjavenkov IA, Matyugov S et al (2000) Radio holographic principle for observing natural processes in the atmosphere and retrieving meteorological parameters from radio occultation data. Earth Planets Space 52:893–899. https://doi.org/10.1186/BF03352302

    Article  Google Scholar 

  4. Pavelyev A, Tsuda T, Igarashi K, Liou YA, Hocke K (2003) Wave structures in the electron density profile in the ionospheric D- and E-layers observed by radio holography analysis of the GPS/MET radio occultation data. J Atmos Sol Terr Phys 65:59–70. https://doi.org/10.1016/S1364-6826(02)00226-2

    Article  Google Scholar 

  5. Theodorou I, Ilioudis C V, Clemente C, Vasile M (2019) SISAR imaging - radio holography signal reconstruction based on receiver-transmitter motion. In: 2019 IEEE Radar Conference (RadarConf). IEEE, USA. ISBN 9781728116792. https://doi.org/10.1109/RADAR.2019.8835596

  6. Sukhanov D, Zavyalova K (2012) Reconstruction of 3D radio images from multifrequency holographic measurements. Tech Phys. https://doi.org/10.1134/S1063784212060229

    Article  Google Scholar 

  7. Sukhanov DY, Zav’yalova KV (2014) Ultrabroadband 3D radio holography in a stratified medium. Tech Phys 59:1854–1858. https://doi.org/10.1134/S1063784214120263

    Article  Google Scholar 

  8. Ma X, Li T (2019) Surface reconstruction of deformable reflectors by combining zernike polynomials with radio holography. AIAA J 57:1–9. https://doi.org/10.2514/1.J058023

    Article  MathSciNet  Google Scholar 

  9. Ivashov S, Razevig V, Vasiliev I, Zhuravlev A, Bechtel T, Capineri L (2012) Holographic subsurface Radar of RASCAN type: development and applications. IEEE J Sel Top Appl Earth Obs Remote Sens 4:763–778. https://doi.org/10.1109/JSTARS.2011.2161755

    Article  Google Scholar 

  10. Cherepenin VA, Zhuravlev AV, Chizh MA, Kokoshkin AV, Korotkov VA, Korotkov KV et al (2017) Reconstruction of subsurface radio holograms fully and partially measured by different methods. J Commun Technol Electron 62:780–787. https://doi.org/10.1134/S1064226917070038

    Article  Google Scholar 

  11. Sharma TP, Solanki A, Jain T et al (2023) Wi-Fi based quadcopter drone with battery monitoring and optimization using crazyflie platform. Int J Inf Technol. https://doi.org/10.1007/s41870-023-01639-3

    Article  Google Scholar 

  12. Mahbub M (2021) Unmanned aerial vehicle-collaborative 5G: a cooperative technology for enhancement of 5G NR. Int J Inf Technol 13:793–799. https://doi.org/10.1007/s41870-021-00623-z

    Article  Google Scholar 

  13. Ma’sum M, Arrofi M, Jati G, Arifin F, Nanda Kurniawan M, Mursanto P et al (2013) Simulation of intelligent unmanned aerial vehicle (UAV) For military surveillance. 2013 International conference on advanced computer science and information systems, ICACSIS 2013. https://doi.org/10.1109/ICACSIS.2013.6761569

  14. Selma B, Chouraqui S, Abouaïssa H (2020) Optimal trajectory tracking control of unmanned aerial vehicle using ANFIS-IPSO system. Int J Inf Technol 12:383–395. https://doi.org/10.1007/s41870-020-00436-6

    Article  Google Scholar 

  15. Cummings ML, Bruni S, Mercier S, Mitchell PJ (2007) Automation architecture for single operator, multiple UAV command and control. Int C2 J 1(2):1–24

  16. Lum C, Vagners J, Vavrina M, Vian J (2012) Formation flight of swarms of autonomous vehicles in obstructed environments using vector field navigation. Proceedings of the 2012 International Conference on Unmanned Aircraft Systems, June 2012

  17. Suleimenov IE, Gabrielyan OA, Malenko SA, Vitulyova YS, Nekita AG (2021) Algorithmic basis of battle neural networks and crisis phenomena in modern society. In: Krapchunov DY, Malenko SA, Shipulin VO, Zhukova EF, Nekita AG, Fikhtner OA (eds) Perishable and eternal: mythologies and social technologies of digital civilization, vol 120 European proceedings of social and behavioural sciences. European Publisher, Brussels, pp 247–255

    Google Scholar 

  18. Kalinin V, Chapursky V, Cherepenin V (2021) Super-resolution of radar and radio holography systems based on a MIMO retrodirective antenna array. J Commun Technol Electron 66:727–736. https://doi.org/10.1134/S1064226921060139

    Article  Google Scholar 

  19. Barakat M, Saeed R, Edam S, Khalifa O (2023) Performance evaluation of coherent MIMO radar assisted with space-time coding. https://doi.org/10.1109/ICCCE58854.2023.10246063

  20. Kamburov L, Hristov H, Feick R (2004) Optimum design of millimeter-wave double-dielectric fresnel zone-plate lens and antenna. Int J Infrared Millim Waves 25:301–316. https://doi.org/10.1023/B:IJIM.0000017901.81288.e0

    Article  Google Scholar 

  21. Ermukhambetova B, Mun G, Kabdushev S, Kadyrzhan A, Kadyrzhan K, Vitulyova Y et al (2023) New approaches to the development of information security systems for unmanned vehicles. Indones J Electr Eng Comput Sci 31:810. https://doi.org/10.11591/ijeecs.v31.i2.pp810-819

    Article  Google Scholar 

  22. Lyubchich VA (2015) Application of the radio holographic method in the prospecting for local ore bodies. Izv Phys Solid Earth 51:290–299. https://doi.org/10.1134/S1069351315020056

    Article  Google Scholar 

  23. Popov AV, Reznikov AE, Berkut AI, Edemsky DE, Morozov PA, Prokopovich IV (2022) Methods and algorithms of subsurface holographic sounding. Remote Sens (Basel). https://doi.org/10.3390/rs14205274

    Article  Google Scholar 

  24. Yuan Y, Zhao Y, Zong B, Parolari S (2020) Potential key technologies for 6G mobile communications. Sci China Inf Sci 63:183301. https://doi.org/10.1007/s11432-019-2789-y

    Article  Google Scholar 

  25. Huang C, Hu S, Alexandropoulos GC, Zappone A, Yuen C, Zhang R et al (2020) Holographic MIMO surfaces for 6G wireless networks: opportunities, challenges, and trends. IEEE Wirel Commun 27:118–125. https://doi.org/10.1109/MWC.001.1900534

    Article  Google Scholar 

  26. Schmalz J, Schmalz G, Gureyev T, Pavlov KM (2010) On the derivation of the Green’s function for the Helmholtz equation using generalized functions. Am J Phys 78:181–186. https://doi.org/10.1119/1.3253655

    Article  Google Scholar 

  27. Suleimenov I, Tolmachev Y (1994) On the possibility of generalization of Fourier optics. Opt Spectrosc 76:893–898

    Google Scholar 

  28. Suleimenov I, Tolmachev Y (1994) Generalized Fourier optics. I. Reflection of monochromatic radiation from mirrors of arbitrary shape. Opt Spectrosc 77:119–125

    Google Scholar 

  29. Vitulyova YS, Suleimenov IE, Matrassulova DK et al (2023) Discrete form of the Huygens-Fresnel principle: to the multi-dimensional analog of the Nyquist-Shannon sampling theorem. Int J Inf Technol 15:3751–3759. https://doi.org/10.1007/s41870-023-01423-3

    Article  Google Scholar 

  30. Santos EA, Castro F, Torres R (2018) Huygens-Fresnel principle: analyzing consistency at the photon level. Phys Rev A 97(4):043853

    Article  Google Scholar 

  31. Charnotskii M (2015) Extended Huygens-Fresnel principle and optical waves propagation in turbulence: discussion. JOSA A 32(7):1357–1365

    Article  Google Scholar 

  32. Thrane L, Yura HT, Andersen PE (2000) Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle. JOSA A 17(3):484–490

    Article  Google Scholar 

  33. Vaidyanathan PP (2001) Generalizations of the sampling theorem: seven decades after Nyquist. IEEE Trans Circuits Syst I Fundam Theory Appl 48:1094–1109. https://doi.org/10.1109/81.948437

    Article  MathSciNet  Google Scholar 

  34. Farrow C, Shaw M, Kim H, Juhás P, Billinge S (2011) The Nyquist-Shannon sampling theorem and the atomic pair distribution function. Phys Rev B. https://doi.org/10.1103/PhysRevB.84.134105

    Article  Google Scholar 

  35. Banaeizadeh F, Toroghi Haghighat A (2020) An energy-efficient data gathering scheme in underwater wireless sensor networks using a mobile sink. Int J Inf Technol 12:513–522. https://doi.org/10.1007/s41870-020-00445-5

    Article  Google Scholar 

  36. Goodman JW, Sutton P (1996) Introduction to Fourier optics. Quantum Semiclass Opt J Eur Opt Soc Part B. https://doi.org/10.1088/1355-5111/8/5/014

    Article  Google Scholar 

  37. Moldakhan I, Dinara M, Shaltykova D, Suleimenov I (2021) Some advantages of non-binary Galois fields for digital signal processing. Indones J Electr Eng Comput Sci 23:871–878. https://doi.org/10.11591/ijeecs.v23.i2.pp871-878

    Article  Google Scholar 

  38. Vitulyova E, Matrassulova DK, Suleimenov IE (2021) New application of non-binary Galois fields Fourier transform: digital analog of convolution theorem. Indones J Electr Eng Comput Sci 23:1718

    Google Scholar 

  39. Suleimenov I, Vitulyova Y, Kabdushev S, Bakirov A (2023) Improving the efficiency of using multivalued logic tools. Sci Rep. https://doi.org/10.1038/s41598-023-28272-1

    Article  Google Scholar 

  40. Suleimenov IE, Aushev VM, Tulebekov EA, Antoshchuk IA (2006) Effect of resonance phenomena on the wave structure of the middle atmosphere. Geomag Aeron 46:371–381. https://doi.org/10.1134/S0016793206030121

    Article  Google Scholar 

  41. Suleimenov I, Mun G, Ivlev R, Panchenko S, Kaldybekov D (2012) Autooscillations in thermo-responsive polymer solutions as the basis for a new type of sensor panels. AASRI Procedia 3:577–582. https://doi.org/10.1016/j.aasri.2012.11.091

    Article  Google Scholar 

Download references

Acknowledgements

This research has been funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant no. AP14870281).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aruzhan Kadyrzhan.

Ethics declarations

Conflict of interest

The authors confirm that no third-party data was used in this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitulyova, Y., Kadyrzhan, K., Kadyrzhan, A. et al. Reducing the description of arbitrary wave field converters to tensor form. Int. j. inf. tecnol. (2024). https://doi.org/10.1007/s41870-024-01863-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41870-024-01863-5

Keywords

Navigation