Skip to main content
Log in

Pose invariant non-frontal 2D, 2.5D face detection and recognition technique

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

In this paper, the Pose Invariant Identity Recognition (PIIR) technique is proposed. It measures face resemblance using facial landmarks, which are further vigorous to pose disparity. The proposed technique utilizes the concepts of face frontalization and discriminative learning techniques. 3D Morphable Model is used in both techniques for pose invariant. The proposed technique is validated on CAS-PEAL face dataset. Experimental results signify that the proposed technique attains authentication accuracy of 90.24% on face datasets with 30° pan-angle. The proposed technique is further applied on 2.5D face dataset with variant facial positions and expressions. Results reveal that the proposed method can identify the face accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The dataset utilized in this study is openly accessible to the public. As such, it can be readily accessed and employed for further research purposes as needed.

References

  1. Wang H et al (2018) Cosface: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 5265–5274

  2. Kumar A, Jain S, Kumar M (2022) Face and gait biometrics authentication system based on simplified deep neural networks. Int J Inf Technol 15(2):1005–1014. https://doi.org/10.1007/S41870-022-01087-5/METRICS

    Article  Google Scholar 

  3. Blanz V, Vetter T (1999) A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp 187–194

  4. Huang J, Heisele B, Blanz V (2003) Component-based face recognition with 3D morphable models. In: Audio-and Video-Based Biometric Person Authentication: 4th International Conference, AVBPA 2003 Guildford, UK, June 9--11, 2003 Proceedings 4, pp 27–34

  5. Amberg B, Knothe R, Vetter T (2008) Expression invariant 3D face recognition with a morphable model. In: 2008 8th IEEE International Conference on Automatic Face and Gesture Recognition, pp 1–6

  6. Bacivarov I, Corcoran P, Ionita M (2010) Smart cameras: 2D affine models for determining subject facial expressions. IEEE Trans Consum Electron 56(2):289–297

    Article  Google Scholar 

  7. Newcombe RA et al (2011) Kinectfusion: real-time dense surface mapping and tracking. In: 10th IEEE International Symposium on Mixed and Augmented Reality, pp 127–136

  8. Keller M, Lefloch D, Lambers M, Izadi S, Weyrich T, Kolb A (2013) Real-time 3d reconstruction in dynamic scenes using point-based fusion. In: 2013 International Conference on 3D Vision-3DV 2013, pp 1–8

  9. Twellmann T, Saalbach A, Gerstung O, Leach MO, Nattkemper TW (2004) Image fusion for dynamic contrast enhanced magnetic resonance imaging. Biomed Eng Online 3(1):1–21

    Article  Google Scholar 

  10. Savran A et al (2008) Bosphorus database for 3D face analysis. In: Biometrics and Identity Management: First European Workshop, BIOID 2008, Roskilde, Denmark, May 7–9, 2008. Revised Selected Papers 1, 2008, pp 47–56

  11. Svetkoff DJ, Rohrer DK, Noblett DA, Jackson RL (1997) Method and system for triangulation-based, 3-D imaging utilizing an angled scaning beam of radiant energy. Google Patents

  12. Gunturk BK, Batur AU, Altunbasak Y, Hayes MH, Mersereau RM (2003) Eigenface-domain super-resolution for face recognition. IEEE Trans Image Process 12(5):597–606

    Article  Google Scholar 

  13. Chan CH, Tahir MA, Kittler J, Pietikainen M (2012) Multiscale local phase quantization for robust component-based face recognition using kernel fusion of multiple descriptors. IEEE Trans Pattern Anal Mach Intell 35(5):1164–1177

    Article  Google Scholar 

  14. Blanz V, Grother P, Phillips PJ, Vetter T (2005) Face recognition based on frontal views generated from non-frontal images. IEEE Comput Soc Conf Comput Vis Pattern Recognit 2:454–461

    Google Scholar 

  15. Sharma S, Kumar V (2022) 3D face reconstruction in deep learning era: a survey. Arch Comput Methods Eng 29(5):3475–3507. https://doi.org/10.1007/S11831-021-09705-4

    Article  Google Scholar 

  16. Ahmed SB, Ali SF, Ahmad J, Adnan M, Fraz MM (2020) On the frontiers of pose invariant face recognition: a review. Artif Intell Rev 53(4):2571–2634. https://doi.org/10.1007/S10462-019-09742-3/TABLES/12

    Article  Google Scholar 

  17. Hajati F, Raie AA, Gao Y (2010) Pose-invariant 2.5D face recognition using geodesic texture warping. Int Conf Control Autom Robot Vis. https://doi.org/10.1109/ICARCV.2010.5707848

    Article  MATH  Google Scholar 

  18. Elharrouss O, Almaadeed N, Al-Maadeed S, Khelifi F (2022) Pose-invariant face recognition with multitask cascade networks. Neural Comput Appl 34(8):6039–6052. https://doi.org/10.1007/S00521-021-06690-4/TABLES/7

    Article  Google Scholar 

  19. Tran L, Yin X, Liu X (2017) Disentangled representation learning GAN for pose-invariant face recognition. Proc IEEE Conf Comput Vis Pattern Recognit 2017:1283–1292. https://doi.org/10.1109/CVPR.2017.141

    Article  Google Scholar 

  20. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  21. Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621

    Article  Google Scholar 

  22. Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The FERET evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22(10):1090–1104

    Article  Google Scholar 

  23. Sabharwal T, Gupta R (2021) Facial marks for enhancing facial recognition after plastic surgery. Int J Inf Technol 13(1):391–396. https://doi.org/10.1007/S41870-020-00566-X/METRICS

    Article  Google Scholar 

  24. Shivashankara S, Srinath S (2022) Signer independent real-time hand gestures recognition using multi-features extraction and various classifiers. Int J Inf Technol 14(3):1229–1240. https://doi.org/10.1007/S41870-020-00463-3/METRICS

    Article  Google Scholar 

  25. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: towards real-time object detection with region proposal networks. Advances in neural information processing systems. Springer, p 28

    Google Scholar 

  26. Chen J et al (2009) WLD: a robust local image descriptor. IEEE Trans Pattern Anal Mach Intell 32(9):1705–1720

    Article  Google Scholar 

  27. Watkins D (2014) Correlates of approaches to learning: a cross-cultural meta-analysis. Perspectives on thinking, learning, and cognitive styles. Routledge, pp 165–196

    Chapter  Google Scholar 

  28. Karsten F, Slikker M, van Houtum GJ (2011) Analysis of resource pooling games via a new extension of the Erlang loss function. In: Tech. Rep., BETA Work. Pap. 344, Eindhoven University Technology

  29. Wu X, He R, Sun Z, Tan T (2018) A light CNN for deep face representation with noisy labels. IEEE Trans Inf Forensics Secur 13(11):2884–2896

    Article  Google Scholar 

  30. Yu W, Yang K, Bai Y, Xiao T, Yao H, Rui Y (2016) Visualizing and comparing AlexNet and VGG using deconvolutional layers.

  31. Parkhi OM, Vedaldi A, Zisserman A (2015) Deep face recognition. In: Proceedings of the British Machine Vision Conference,” Swansea, UK, p 41

  32. Schroff F, Kalenichenko D, Philbin J (2015) Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 815–823

  33. Sun Y, Wang X, Tang X (2015) Deeply learned face representations are sparse, selective, and robust. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2892–2900

  34. Sun Y, Liang D, Wang X, Tang X (2015) Deepid3: face recognition with very deep neural networks. arXiv Prepr. arXiv1502.0087

  35. Singh M, Provan GM (1995) E cient learning of selective Bayesian network classifiers. Submitted Publishers

    Google Scholar 

  36. Sharma S, Kumar V (2020) Voxel-based 3D occlusion-invariant face recognition using game theory and simulated annealing. Multimed Tools Appl 79(35–36):26517–26547. https://doi.org/10.1007/S11042-020-09331-5

    Article  Google Scholar 

  37. Rachapalli DR, Kalluri HK (2022) Multi-modal compound biometric feature set security and person authentication using cancelable 2D color barcode pattern generation technique. Int J Inf Technol 14(1):201–214. https://doi.org/10.1007/S41870-021-00819-3/METRICS

    Article  Google Scholar 

  38. Sandbach G, Zafeiriou S, Pantic M, Yin L (2012) Static and dynamic 3D facial expression recognition: a comprehensive survey. Image Vis Comput 30(10):683–697

    Article  Google Scholar 

  39. Lai YH, Lai SH (2018) Emotion-preserving representation learning via generative adversarial network for multi-view facial expression recognition. In: 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2018), pp 263–270

  40. Zhang T, Zheng W, Cui Z, Zong Y, Yan J, Yan K (2016) A deep neural network-driven feature learning method for multi-view facial expression recognition. IEEE Trans Multimed 18(12):2528–2536

    Article  Google Scholar 

  41. Jampour M, Lepetit V, Mauthner T, Bischof H (2017) Pose-specific non-linear mappings in feature space towards multiview facial expression recognition. Image Vis Comput 58:38–46

    Article  Google Scholar 

  42. Chopra S, Hadsell R, LeCun Y (2005) Learning a similarity metric discriminatively, with application to face verification. IEEE Comput Soc Conf Comput Vis Pattern Recognit 1:539–546

    Google Scholar 

  43. Blanz V, Vetter T (2003) Face recognition based on fitting a 3D morphable model. IEEE Trans Pattern Anal Mach Intell 25(9):1063–1074

    Article  Google Scholar 

  44. Gao W et al (2007) The CAS-PEAL large-scale Chinese face database and baseline evaluations. IEEE Trans Syst Man Cybern A Syst Hum 38(1):149–161

    Google Scholar 

  45. Rurainsky J, Eisert P (2004) Eye center localization using adaptive templates. IEEE Comput Soc Conf Comput Vis Pattern Recognit Work. https://doi.org/10.1109/CVPR.2004.339

    Article  Google Scholar 

  46. Cheung KW, Chen J, Moon YS (2008) Pose-tolerant non-frontal face recognition using EBGM. In: 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems, pp 1–6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thavani, S., Sharma, S. & Kumar, V. Pose invariant non-frontal 2D, 2.5D face detection and recognition technique. Int. j. inf. tecnol. 15, 2603–2611 (2023). https://doi.org/10.1007/s41870-023-01335-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-023-01335-2

Keywords

Navigation