Skip to main content
Log in

A combined three and five inputs majority gate-based high performance coplanar full adder in quantum-dot cellular automata

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

Nowadays, arithmetic computing is an important subject in computer architectures in which the one-bit full-adder gate plays a significant role. Thus, efficient design of such full-adder component can be beneficial to the overall efficiency of the entire system. In this essay, a novel method for the design and simulation of a combined majority gate toward realization of the one-bit full-adder gate is proposed. We inspect an alternative approach for the streamlined physical design of quantum-dot cellular automata (QCA) full-adder circuits in which the placement of input cells and wire crossing congestion are substantially reduced. The proposed method has outstanding characteristics such as low complexity, reduced area consumption, simplified physical design, and ultra-high speed one-bit full-adder. Based on simulation results the proposed design provides 33.33% reduction in area and 20.00% improvement in complexity as well as 10.49% in 1 Ek reduction in power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Liu W, Lu L, O’Neill M, Swartzlander EE (2014) The first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans Nanotechnol 13(3):476–487. https://doi.org/10.1109/tnano.2014.2306754

    Article  Google Scholar 

  2. Perri S, Corsonello P, Cocorullo G (2014) Area-delay efficient binary adders in QCA. IEEE Trans Very Large Scale Integrat (vlsi) Syst 22(5):1174–1179. https://doi.org/10.1109/tvlsi.2013.2261831

    Article  Google Scholar 

  3. Sen B, Dutta M, Sikdar BK (2014) Efficient design of parity preserving logic in quantum-dot cellular automata targeting enhanced scalability in testing. Microelectron J 45(2):239–248. https://doi.org/10.1016/j.mejo.2013.11.008

    Article  Google Scholar 

  4. Khosroshahy MB, Moaiyeri MH, Angizi S, Bagherzadeh N, Navi K (2017) Quantum-dot cellular automata circuits with reduced external fixed inputs. Microprocess Microsyst 50:154–163. https://doi.org/10.1016/j.micpro.2017.03.009

    Article  Google Scholar 

  5. Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4(1):49. https://doi.org/10.1088/0957-4484/4/1/004

    Article  Google Scholar 

  6. Roohi A, Zand R, Angizi S, Demara RF (2016) A parity-preserving reversible QCA gate with self-checking cascadable resiliency. IEEE Trans Emerg Topics Comput. https://doi.org/10.1109/tetc.2016.2593634

    Article  Google Scholar 

  7. Chabi AM, Roohi A, Khademolhosseini H, Sheikhfaal S, Angizi S, Navi K, DeMara RF (2017) Towards ultra-efficient QCA reversible circuits. Microprocess Microsyst 49:127–138. https://doi.org/10.1016/j.micpro.2016.09.015

    Article  Google Scholar 

  8. Vankamamidi V, Ottavi M, Lombardi F (2008) Two-dimensional schemes for clocking/timing of QCA circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 27(1):34–44. https://doi.org/10.1109/tcad.2007.907020

    Article  MATH  Google Scholar 

  9. Bagherian khosroshahy M, Daliri MS, Abdoli A, Navi K, Bagherzadeh N (2016) A 3D universal structure based on molecular-QCA and CNT technologies. J Mol Struct 1119:86–95. https://doi.org/10.1016/j.molstruc.2016.04.025

    Article  Google Scholar 

  10. Sayedsalehi S, Moaiyeri MH, Navi K (2011) Novel efficient adder circuits for quantum-dot cellular automata. J Comput Theor Nanosci 8(9):1769–1775. https://doi.org/10.1166/jctn.2011.1881

    Article  Google Scholar 

  11. Dysart TJ (2013) Modeling of electrostatic QCA wires. IEEE Trans Nanotechnol 12(4):553–560. https://doi.org/10.1109/tnano.2013.2257834

    Article  Google Scholar 

  12. Kyosun K, Kaijie W, Karri R (2006) Quantum-dot cellular automata design guideline. IEICE Trans Fundam Electron Commun Comput Sci 89(6):1607–1614. https://doi.org/10.1093/ietfec/e89-a.6.1607

    Article  Google Scholar 

  13. Angizi S, Sarmadi S, Sayedsalehi S, Navi K (2015) Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron J 46(1):43–51. https://doi.org/10.1016/j.mejo.2014.10.003

    Article  Google Scholar 

  14. Roohi A, DeMara RF, Khoshavi N (2015) Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron J 46(6):531–542. https://doi.org/10.1016/j.mejo.2015.03.023

    Article  Google Scholar 

  15. Angizi S, Alkaldy E, Bagherzadeh N, Navi K (2014) Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J Low Power Electron 10(2):259–271. https://doi.org/10.1166/jolpe.2014.1320

    Article  Google Scholar 

  16. Ottavi M, Schiano L, Lombardi F, Tougaw D (2006) HDLQ: a HDL environment for QCA design. ACM J Emerg Technol Comput Syst (JETC) 2(4):243–261. https://doi.org/10.1145/1216396.1216397

    Article  Google Scholar 

  17. Kumar D, Mitra D (2016) Design of a practical fault-tolerant adder in QCA. Microelectron J 53:90–104. https://doi.org/10.1016/j.mejo.2016.04.004

    Article  Google Scholar 

  18. Wang P, Niamat MY, Vemuru SR, Alam M, Killian T (2015) Synthesis of majority/minority logic networks. IEEE Trans Nanotechnol 14(3):473–483. https://doi.org/10.1109/tnano.2015.2408330

    Article  Google Scholar 

  19. Walus K, Jullien G (2006) Design tools for an emerging SoC technology: quantum-dot cellular automata. Proc IEEE 94(6):1225–1244. https://doi.org/10.1109/jproc.2006.875791

    Article  Google Scholar 

  20. Zhang R, Walus K, Wang W, Jullien GA (2004) A method of majority logic reduction for quantum cellular automata. IEEE Trans Nanotechnol 3(4):443–450. https://doi.org/10.1109/tnano.2004.834177

    Article  Google Scholar 

  21. Navi K, Farazkish R, Sayedsalehi S, Azghadi MR (2010) A new quantum-dot cellular automata full-adder. Microelectron J 41(12):820–826. https://doi.org/10.1016/j.mejo.2010.07.003

    Article  Google Scholar 

  22. Navi K, Sayedsalehi S, Farazkish R, Azghadi MR (2010) Five-input majority gate, a new device for quantum-dot cellular automata. J Comput Theor Nanosci 7(8):1546–1553. https://doi.org/10.1166/jctn.2010.1517

    Article  Google Scholar 

  23. Sayedsalehi S, Azghadi MR, Angizi S, Navi K (2015) Restoring and non-restoring array divider designs in quantum-dot cellular automata. Inf Sci 311:86–101. https://doi.org/10.1016/j.ins.2015.03.030

    Article  MathSciNet  Google Scholar 

  24. Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825. https://doi.org/10.1063/1.356375

    Article  Google Scholar 

  25. Wang W, Walus K, Jullien GA (2003) Quantum-dot cellular automata adders. In: Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on. IEEE, pp 461–464. https://doi.org/10.1109/nano.2003.1231818

  26. Azghadi, Kavehie O, Navi K (2012) A novel design for quantum-dot cellular automata cells and full adders. arXiv Preprint. https://doi.org/10.3923/jas.2007.3460.3468(arXiv:1204.2048)

    Article  Google Scholar 

  27. Angizi S, Danehdaran F, Sarmadi S, Sheikhfaal S, Bagherzadeh N, Navi K (2015) An ultra-high speed and low complexity quantum-dot cellular automata full adder. J Low Power Electron 11(2):173–180. https://doi.org/10.1166/jolpe.2015.1378

    Article  Google Scholar 

  28. Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31. https://doi.org/10.1109/tnano.2003.820815

    Article  Google Scholar 

  29. Hanninen I, Takala J (2007) Robust adders based on quantum-dot cellular automata. In: Application-specific Systems, Architectures and Processors. ASAP. IEEE International Conf. on, 2007. IEEE, pp 391–396. https://doi.org/10.1109/asap.2007.4459295

  30. Mohammadyan S, Angizi S, Navi K (2015) New fully single layer QCA full-adder cell based on feedback model. Int J High Perform Syst Archit 5(4):202–208. https://doi.org/10.1504/ijhpsa.2015.072847

    Article  Google Scholar 

  31. Abedi D, Jaberipur G, Sangsefidi M (2015) Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans Nanotechnol 14(3):497–504. https://doi.org/10.1109/tnano.2015.2409117

    Article  Google Scholar 

  32. Labrado C, Thapliyal H (2016) Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing. Electron Lett 52(6):464–466. https://doi.org/10.1049/el.2015.3834

    Article  Google Scholar 

  33. Singh G, Raj B, Sarin R (2017) Design and performance analysis of a new efficient coplanar quantum-dot cellular automata adder. Indian J Pure Appl Phys (IJPAP) 55(2):97–103. http://14.139.47.23/index.php/IJPAP/article/view/13470

  34. De D, Das JC (2017) Design of novel carry save adder using quantum dot-cellular automata. J Comput Sci 22:54–68. https://doi.org/10.1016/j.jocs.2017.08.019

    Article  Google Scholar 

  35. Ahmad F, Bhat GM, Khademolhosseini H, Azimi S, Angizi S, Navi K (2016) Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J Comput Sci 16:8–15. https://doi.org/10.1016/j.jocs.2016.02.005

    Article  MathSciNet  Google Scholar 

  36. Danehdaran F, Khosroshahy MB, Navi K, Bagherzadeh N (2018) Design and power analysis of new coplanar one-bit full-adder cell in quantum-dot cellular automata. J Low Power Electron 14(1):38–48. https://doi.org/10.1166/jolpe.2018.1529

    Article  Google Scholar 

  37. Roohi A, Khademolhosseini H, Sayedsalehi S, Navi K (2014) A symmetric quantum-dot cellular automata design for 5-input majority gate. J Comput Electron 13(3):701–708. https://doi.org/10.1007/s10825-014-0589-5

    Article  Google Scholar 

  38. Farazkish R, Navi K (2012) New efficient five-input majority gate for quantum-dot cellular automata. J Nanopart Res 14(11):1252. https://doi.org/10.1007/s11051-012-1252-3

    Article  Google Scholar 

  39. Farazkish R, Khodaparast F (2015) Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess Microsyst 39(6):426–433. https://doi.org/10.1016/j.micpro.2015.04.004

    Article  Google Scholar 

  40. Khosroshahy MB, Moaiyeri MH, Navi K (2017) Design and evaluation of a 5-input majority gate-based content-addressable memory cell in quantum-dot cellular automata. In: Computer Architecture and Digital Systems (CADS), 2017 19th International Symposium on, 2017. IEEE, pp 1–6. https://doi.org/10.1109/cads.2017.8310671

  41. Khosroshahy MB, Moaiyeri MH, Navi K, Bagherzadeh N (2017) An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata. Results Phys 7:3543–3551. https://doi.org/10.1016/j.rinp.2017.08.067

    Article  Google Scholar 

  42. Srivastava S, Asthana A, Bhanja S, Sarkar S (2011) QCAPro-an error-power estimation tool for QCA circuit design. In: Circuits and Systems (ISCAS), 2011 IEEE International Symposium on, IEEE, pp 2377–2380. https://doi.org/10.1109/iscas.2011.5938081

  43. Lombardi F, Huang J (2007) Design and test of digital circuits by quantum-dot cellular automata. Artech House, Inc., Norwood

    Google Scholar 

  44. Pudi V, Sridharan K (2012) Low complexity design of ripple carry and Brent-Kung adders in QCA. Nanotechnol IEEE Trans 11(1):105–119. https://doi.org/10.1109/TNANO.2011.2158006

    Article  Google Scholar 

  45. Ahmad F, John MU, Khosroshahy MB, Sarmadi S, Bhat GM, Peer ZA, Wani SJ (2019) Performance evaluation of an ultra-high speed adder based on quantum-dot cellular automata. Int J Inf Technol. https://doi.org/10.1007/s41870-019-00313-x

    Article  Google Scholar 

  46. Bahar AN, Ahmad F, Nahid NM, Hassan MK, Abdullah-Al-Shafi M, Ahmed K (2018) An optimal design of conservative efficient reversible parity logic circuits using QCA. Int J Inf Technol. https://doi.org/10.1007/s41870-018-0226-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keivan Navi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danehdaran, F., Angizi, S., Bagherian Khosroshahy, M. et al. A combined three and five inputs majority gate-based high performance coplanar full adder in quantum-dot cellular automata. Int. j. inf. tecnol. 13, 1165–1177 (2021). https://doi.org/10.1007/s41870-019-00365-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-019-00365-z

Keywords

Navigation