Skip to main content
Log in

Performance evaluation of an ultra-high speed adder based on quantum-dot cellular automata

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

Quantum-dot cellular automata (QCA) is among the most promising nanotechnologies as the substitution for the current metal oxide semiconductor field effect transistor based devices. Therefore, lots of attention have been paid to different aspects to improve the efficiency of QCA circuits. In this way, the adder circuits are widely investigated since their performance can directly affect the whole digital system performance. In this paper, a new ultra-high speed QCA full adder cell is proposed based on multi-layer structures. The proposed full adder cell is simple in design using 3-input Exclusive-OR (TIEO), which computes the Sum bits and Majority gate, which computes the Carry bits. To verify the efficacy of the presented full adder cell, it is considered, the main constructing block in 4-bit ripple carry adder circuit. Hence, significant improvements in terms of area and cell count have been achieved. Particularly simulation results show 20% and 1.8% reduction respectively in the area and cell count overhead. Detailed performance evaluation and structural analysis are performed in different aspects to authenticate the proposed circuits (one-bit and 4-bit) having superb performance in comparison to previously reported works. QCADesigner CAD tool has been used to verify the correct functionality of the proposed architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhang R, Walus K, Wang W, Jullien GA (2004) A method of majority logic reduction for quantum cellular automata. IEEE Trans Nanotechnol 3(4):443–450

    Article  Google Scholar 

  2. Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825

    Article  Google Scholar 

  3. Roohi A, DeMara RF, Khoshavi N (2015) Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron J 46(6):531–542

    Article  Google Scholar 

  4. Angizi S, Danehdaran F, Sarmadi S, Sheikhfaal S, Bagherzadeh N, Navi K (2015) An ultra-high speed and low complexity quantum-dot cellular automata full adder. J Low Power Electron 11(2):173–180

    Article  Google Scholar 

  5. Sen B, Rajoria A, Sikdar BK (2013) Design of efficient full adder in quantum-dot cellular automata. Sci World J 10:2013

    Google Scholar 

  6. Sayedsalehi S, Moaiyeri MH, Navi K (2011) Novel efficient adder circuits for quantum-dot cellular automata. J Comput Theor Nanosci 8(9):1769–1775

    Article  Google Scholar 

  7. Roohi A, Khademolhosseini H, Sayedsalehi S, Navi K (2014) A symmetric quantum-dot cellular automata design for 5-input majority gate. J Comput Electron 13(3):701–708

    Article  Google Scholar 

  8. Navi K, Roohi A, Sayedsalehi S (2013) Designing reconfigurable quantum-dot cellular automata logic circuits. J Comput Theor Nanosci 10(5):1137–1146

    Article  Google Scholar 

  9. Navi K, Farazkish R, Sayedsalehi S, Azghadi MR (2010) A new quantum-dot cellular automata full-adder. Microelectron J 41(12):820–826

    Article  Google Scholar 

  10. Hashemi S, Tehrani M, Navi K (2012) An efficient quantum-dot cellular automata full-adder. Sci Res Essays 7(2):177–189

    Google Scholar 

  11. Hänninen I, Takala J (2010) Binary adders on quantum-dot cellular automata. J Signal Process Syst 58(1):87–103

    Article  Google Scholar 

  12. Cho H, Swartzlander EE Jr (2009) Adder and multiplier design in quantum-dot cellular automata. IEEE Trans Comput 58(6):721–727

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang R, Walus K, Wang W, Jullien GA (2005) Performance comparison of quantum-dot cellular automata adders. In: IEEE international symposium on 2005 circuits and systems. ISCAS 2005. IEEE, pp 2522–2526

  14. Wang W, Walus K, Jullien GA (2003) Quantum-dot cellular automata adders. In: Third IEEE conference on 2003 nanotechnology, 2003. IEEE-NANO 2003. IEEE, pp 461–464

  15. Vetteth A, Walus K, Dimitrov VS, Jullien GA (2002) Quantum-dot cellular automata carry-look-ahead adder and barrel shifter. In: IEEE emerging telecommunications technologies conference, pp 2–4

  16. Ahmad F, Bhat GM, Khademolhosseini H, Azimi S, Angizi S, Navi K (2016) Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J Comput Sci 16:8–15

    Article  MathSciNet  Google Scholar 

  17. Azghadi MR, Kavehie O, Navi K (2012) A novel design for quantum-dot cellular automata cells and full adders. arXiv preprint arXiv:1204.2048

  18. Navi K, Sayedsalehi S, Farazkish R, Azghadi MR (2010) Five-input majority gate, a new device for quantum-dot cellular automata. J Comput Theor Nanosci 7(8):1546–1553

    Article  Google Scholar 

  19. Kim K, Wu K, Karri R (2006) Quantum-dot cellular automata design guideline. IEICE Trans Fundam Electron Commun Comput Sci 89(6):1607–1614

    Article  Google Scholar 

  20. Angizi S, Alkaldy E, Bagherzadeh N, Navi K (2014) Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J Low Power Electron 10(2):259–271

    Article  Google Scholar 

  21. Sheikhfaal S, Angizi S, Sarmadi S, Moaiyeri MH, Sayedsalehi S (2015) Designing efficient QCA logical circuits with power dissipation analysis. Microelectron J 46(6):462–471

    Article  Google Scholar 

  22. Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31

    Article  Google Scholar 

  23. Angizi S, Sarmadi S, Sayedsalehi S, Navi K (2015) Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron J 46(1):43–51

    Article  Google Scholar 

  24. Khosroshahy MB, Moaiyeri MH, Navi K, Bagherzadeh N (2017) An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata. Results Phys 7:3543–3551

    Article  Google Scholar 

  25. Bagherian khosroshahy M, Sam Daliri M, Abdoli A, Navi K, Bagherzade N (2016) A 3D universal structure based on molecular-QCA and CNT technologies. J Mol Struct 1119:86–95

    Article  Google Scholar 

  26. Snider GL, Orlov AO, Amlani I, Bernstein GH, Lent CS, Merz JL, Porod W (1999) Quantum-dot cellular automata: line and majority logic gate. Jpn J Appl Phys 38(12S):7227

    Article  Google Scholar 

  27. Smith C, Gardelis S, Rushforth A, Crook R, Cooper J, Ritchie D, Linfield E, Jin Y, Pepper M (2003) Realization of quantum-dot cellular automata using semiconductor quantum dots. Superlattices Microstruct 34(3–6):195–203

    Article  Google Scholar 

  28. Wang Z, Liu F (2011) Nanopatterned graphene quantum dots as building blocks for quantum cellular automata. Nanoscale 3(10):4201–4205

    Article  Google Scholar 

  29. Sayedsalehi S, Azghadi MR, Angizi S, Navi K (2015) Restoring and non-restoring array divider designs in quantum-dot cellular automata. Inf Sci 311:86–101

    Article  MathSciNet  Google Scholar 

  30. Sarmadi S, Sayedsalehi S, Fartash M, Angizi S (2016) A structured ultra-dense QCA one-bit full-adder cell. Quantum Matter 5(1):118–123

    Article  Google Scholar 

  31. Abedi D, Jaberipur G, Sangsefidi M (2015) Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans Nanotechnol 14(3):497–504

    Article  Google Scholar 

  32. Labrado C, Thapliyal H (2016) Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing. Electron Lett 52(6):464–466

    Article  Google Scholar 

  33. Mohammadi M, Mohammadi M, Gorgin S (2016) An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron J 50:35–43

    Article  Google Scholar 

  34. Danehdaran F, Khosroshahy MB, Navi K, Bagherzadeh N (2018) Design and power analysis of new coplanar one-bit full-adder cell in quantum-dot cellular automata. J Low Power Electron 14(1):38–48

    Article  Google Scholar 

  35. Khosroshahy MB, Moaiyeri MH, Angizi S, Bagherzadeh N, Navi K (2017) Quantum-dot cellular automata circuits with reduced external fixed inputs. Microprocess Microsyst 50:154–163

    Article  Google Scholar 

  36. Mohammadyan S, Angizi S, Navi K (2015) New fully single layer QCA full-adder cell based on feedback model. Int J High Perform Syst Archit 5(4):202–208

    Article  Google Scholar 

  37. Sangsefidi M, Abedi D, Yoosefi E, Karimpour M (2018) High speed and low cost synchronous counter design in quantum-dot cellular automata. Microelectron J 73:1–11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firdous Ahmad.

Appendix

Appendix

In below, equations of Delay, Area, and Cell Count are described [37].

$$Delay = a_{0} + \mathop \sum \limits_{k = 5}^{i = n - 1} \left( {\frac{{\left( {2^{k - 1} + 2 } \right)}}{16 \times 4}} \right) + 2^{n - 1}$$

The equation of Delay consists of three important parts. The first and second parts are propagation delays of Rst wire through fast 4-bit (0.25) and 5th to an N − 1 bit of full-adder, respectively; moreover, the third part is a delay of nthbit counter (2n−1) [37].

$$Area = 18 \times \left( {\left( {\mathop \sum \limits_{k = 5}^{k = n} \left( {2^{k - 1} + 2} \right)} \right) + 33} \right) \times 400$$

The height of the full-adder is 18 QCA cells. The width is divided into two parts. The first and the second parts are the first 4-bit (33) and least n-4 bits of full-adder, respectively, center to center of the Cell is 20 nm, as the results each QCA cell area is 400 nm2 [37].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, F., John, M.U., Khosroshahy, M.B. et al. Performance evaluation of an ultra-high speed adder based on quantum-dot cellular automata. Int. j. inf. tecnol. 11, 467–478 (2019). https://doi.org/10.1007/s41870-019-00313-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-019-00313-x

Keywords

Navigation