Skip to main content
Log in

Analysis of Positive and Negative Atmospheric Air Ions During New Particle Formation (NPF) Events over Urban City of India

  • Original Paper
  • Published:
Aerosol Science and Engineering Aims and scope Submit manuscript

Abstract

Simultaneous measurements of ion-mobility spectra of both polarities with a Neutral Air Ion Spectrometer (NAIS) operating in the mobility range 3.16–0.00133 cm2 V−1 s−1 (mass diameter range 0.36–47.1 nm) and concentration of Radon (222Rn) were carried out at Pune (18° 31′ N, 73° 55′ E, 560 m above mean sea level). 222Rn progenies measured by a Radon detector, RTM 2200, and surface meteorological parameters during the period January 2012 to December 2012 were analysed. During this period, NPF events were observed on 28 days and 222 days were without any event (non-event). NPF events mostly occurred by photochemistry in the morning hours of the pre-monsoon season (~ 62%) during the hottest months (April and May) of the year. Authors studied different features of new particle formation (NPF) events, and their dependence on meteorological parameters. The annual mean diurnal variations of different categories of ions show a primary maximum in the morning hour along with the secondary maxima in the evening hour and a minimum in the afternoon. The results are explained in terms of the atmospheric boundary layer changes and katabatic wind blowing along the hill slope surrounded by the measurement site. The computed ion production rate correlates (correlation coefficient R = 0.67) well with the observed small cluster ions. Also, the role of temperature and humidity on the ion concentration on both for the event and non-event days are discussed. Using the principal component analysis (PCA), the first five principal components were found to represent more than 98% of the total variance on event and non-event days. Even the first principal component explained about ~ 86% (65%) of the total variance on non-event (event) days. The statistical analysis also confirms that the small and large—ions on non-event days originated from a similar physical/chemical background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ambade B, Sankar TK, Panicker AS, Gautam AS, Gautam S (2021) Characterization, seasonal variation, source apportionment and health risk assessment of black carbon over an urban region of East India. Urban Clim 38:100896

    Article  Google Scholar 

  • Asmi E, Frey A, Virkkula A, Ehn M, Manninen HE, Timonen H, Tolonen-Kivimaki O, Aurela M (2010) Hillamo R and Kulmala M 2010 Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation. Atmos Chem Phys 10:4253–4271. https://doi.org/10.5194/acp-10-4253-2010

    Article  Google Scholar 

  • Betha R, Spracklen DV, Balasubramanian R (2013) Observations of new aerosol particle formation in a tropical urban atmosphere. Atmos Environ 71:340–351

    Article  Google Scholar 

  • Blanchard DC (1963) Electrification of the atmosphere by particles from bubbles in the sea. Prog Oceanogr 1:71–202

    Article  Google Scholar 

  • Bonn B, Boy M, Kulmala M, Groth A, Trawny K, Borchert S, Jacobi S (2009) A new parametrization for ambient particle formation over coniferous forests and its potential implications for the future. Atmos Chem Phys 9:8079–8090. www.atmos-chem-phys.net/9/8079/2009/

  • Boy M, Kulmala M (2002) Nucleation events in the continental boundary layer: influence of physical and meteorological parameters. Atmos Chem Phys 2:1–16. https://doi.org/10.5194/acp-2-1-2002

    Article  Google Scholar 

  • Bricard J (1965) Action of radioactivity and of pollution upon parameters of atmospheric electricity. In: Coroniti SC (ed) Problems of atmospheric and space electricity. Elsevier Science, New York, pp 87–109

    Google Scholar 

  • Carslaw KS, Harrison RG, Kirkby J (2002) Cosmic rays, clouds, and climate. Science 298:1732–1737

    Article  Google Scholar 

  • Chalmers JA (1967) Atmospheric electricity. Pergamon Press, London

    Google Scholar 

  • Chen X, Paatero J, Kerminen V-M, Riuttanen L, Hatakka J, Hiltunen V, Paasonen P, Hirsikko A, Franchin A, Manninen HE, Petäjä T, Viisanen Y, Kulmala M (2016a) Responses of the atmospheric concentration of radon-222 to the vertical mixing and spatial transportation. Boreal Environ Res 21:299–318

    Google Scholar 

  • Chen X, Kerminen V-M, Paatero J, Paasonen P, Manninen HE, Nieminen T, Petäjä T, Kulmala M (2016b) How do air ions reflect variations in ionizing radiation in the lower atmosphere in a Boreal forest? Atmos Chem Phys 16:14297–14315. https://doi.org/10.5194/acp-16-14297-2016

    Article  Google Scholar 

  • Clement CF, Pirjola L, dal Maso M, Mäkelä JM, Kulmala M (2001) Analysis of particle formation bursts observed in Finland. J Aerosol Sci 32:217–236

    Article  Google Scholar 

  • Cobb WE (1977) Atmospheric electric measurements at the south pole. In: Dolezalek H, Reiter R, Steinkopff D (eds) Electrical processes in atmospheres. Federal Republic of Germany, pp 161–167

  • Dal Maso M, Kulmala M, Riipinen I, Wagner R, Hussein T, Aalto PP, Lehtinen KEJ (2005) Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytial¨ a, Finland. Boreal Environ Res 10:323–336

    Google Scholar 

  • Dhanorkar S, Kamra AK (1991) Measurement of mobility spectrum and concentration of all atmospheric ions with a single apparatus. J Geophys Res 91:18671–18678

    Article  Google Scholar 

  • Dhanorkar S, Kamra AK (1993a) Diurnal variations of the mobility spectrum of ions and size distribution of fine aerosols in the atmosphere. J Geophys Res 98:2639–2650. https://doi.org/10.1029/92JD02545

    Article  Google Scholar 

  • Dhanorkar S, Kamra AK (1993b) Diurnal and seasonal variations of the small-, intermediate-, and large-ion concentrations and their contributions to polar conductivity. J Geophys Res 98:14895–14908. https://doi.org/10.1029/93JD00464

    Article  Google Scholar 

  • Dinoi A, Weinhold K, Weidensohler A, Contini D (2021) Study of new particle formation events in Southern Italy. Atmos Environ 244:117920

    Article  Google Scholar 

  • Gautam S, Brema J (2020) Spatio-temporal variation in the concentration of atmospheric particulate matter: a study in fourth largest urban agglomeration in India. Environ Technol Innov. https://doi.org/10.1016/j.eti.2019.100546

    Article  Google Scholar 

  • Gautam AS, Siingh D, Kamra AK (2017) Statistical analysis of the atmospheric ion concentrations and mobility distributions at a tropical station, Pune. Q J R Meteorol Sco 143:2116–2128. https://doi.org/10.1002/qj.3071

    Article  Google Scholar 

  • Gautam S, Gautam AS, Singh K, James EJ, Brema J (2021) Investigations on the relationship among lightning, aerosol concentration, and meteorological parameters with specific reference to the wet and hot humid tropical zone of the southern parts of India. Environ Technol Innov. https://doi.org/10.1016/j.eti.2021.101414

    Article  Google Scholar 

  • Gautam AS (2017) generation mechanisms and characteristics of air ions at a tropical station, Ph.D. thesis, Savitribai Phule Pune University, Pune

  • Gollakota ARK, Gautam S, Santosh M, Sudan HA, Gandhi R, Jebadurai VS, Shu CM (2021) Bioaerosols: characterization, pathways, sampling strategies, and challenges to geo-environment and health. Gondwana Res 99:178–203

    Article  Google Scholar 

  • Gonser SG, Klein F, Birmile W, Gorob J, Kulmal M, Manninen HE, Wieldensohler A, Held A (2014) Ion–particle interactions during formation and growth at a coniferous forest site in Central Europe. Atmos Chem Phys 14:10547–10563

    Article  Google Scholar 

  • Gopalakrishnan V, Pawar SD, Siingh D, Kamra AK (2005) Intermediate ion formation in the ship’s exhaust. Geophys Res Lett 32:L11806. https://doi.org/10.1029/2005GL022613

    Article  Google Scholar 

  • Green AES, Jackman CH, Garvey RH (1977) Electron impact on atmospheric gases. II—yield spectra. J Geophys Res 82:5104–5111. https://doi.org/10.1029/JA082i032p05104

    Article  Google Scholar 

  • Hensen A, van der Hage JCH (1994) Parameterization of cosmic radiation at sea level. J Geophys Res 99:10693–10695

    Article  Google Scholar 

  • Hirsikko A, Laakso L, Hõrrak U, Aalto PP, Kerminen V-M, Kulmala M (2005) Annual and size dependent variation of growth rates and ion concentrations in Boreal forest. Boreal Environ Res 10:357–369

    Google Scholar 

  • Hoppel WA (1985) Ion–aerosol attachment coefficients, ion depletion, and the charge distribution on aerosols. J Geophys Res 90:5917–5923

    Article  Google Scholar 

  • Hoppel WA, Frick GM (1986) Ion–aerosol attachment coefficient and the steady state charge distribution on aerosol in a bipolar environment. J Aerosol Sci 5:1–21

    Article  Google Scholar 

  • Hoppel WA, Fitzgerald JW, Frick GM, Larson R, Mack EJ (1990) Aerosol size distributions and optical properties found in the marine boundary layer over the Atlantic Ocean. J Geophys Res 95:3659–3686. https://doi.org/10.1029/JD095iD04p03659

    Article  Google Scholar 

  • Hoppel WA, Anderson RV, Willett JC (1986) Atmospheric electricity in the planetary boundary layer. In: The Earth’s electrical environment. National Academy Press, Washington, DC, pp 149–165

  • Horrak U, Salm J, Tammet H (1998) Bursts of intermediate ions in atmospheric air. J Geophys Res 103:13909–13915

    Article  Google Scholar 

  • Horrak U, Salm J, Tammet H (2000) Statistical characterization of air ion mobility spectra at Tahkuse Observatory: classification of air ions. J Geophys Res 105:9291–9302

    Article  Google Scholar 

  • Horrak U, Salm J, Tammet H (2003) Diurnal variation in the concentration of air ions of different mobility classes in a rural area. J Geophys Res 108:4653. https://doi.org/10.1029/2002JD003240

    Article  Google Scholar 

  • Horrak U, Tammet H, Aalto PP, Vana M, Hirsikko A, Laakso L, Kulmala M (2006) Formation of charged nanometer aerosol particles associated with rainfall: atmospheric measurements and lab experiment. Rep Ser Aerosol Sci 80:180–185

    Google Scholar 

  • Horrak U (2001) Air ion mobility spectrum at a rural area. Ph.D. Thesis, University of Tartu, Tartu, Estonia

  • Huang X, Zhou L, Ding A, Qi X, Nie W, Wang M, Chi X, Petaja T, Kerminen V-M, Roldin P, Rusanen A, Kulmala M, Boy M (2016) Comprehensive modelling study on observed new particle formation at the SORPES station in Nanjing, China. Atmos Chem Phys 16:2477–2492. https://doi.org/10.5194/acp-16-2477-2016

    Article  Google Scholar 

  • Jaenicke R (1984) Our knowledge about the atmospheric aerosol. In: Proceedings of the 11th international conference on atmospheric aerosols, condensation and ice nuclei, vol 1. Hungadan Meteorology Service, Budapest, pp 99–107

  • Kamra AK, Gautam AS, Siingh D (2015a) Charged nanoparticles produced by splashing of raindrops. J Geophys Res 120:6669–6681. https://doi.org/10.1002/2015JD023320

    Article  Google Scholar 

  • Kamra AK, Siingh D, Gautam AS, Kanawade VP, Tripathi SN, Srivastava AK (2015b) Atmospheric ions and new particle formation events at a tropical location, Pune, India. Q J R Meteorol Soc 141:3140–3156. https://doi.org/10.1002/qj.2598

    Article  Google Scholar 

  • Kamsali N, Prasad BSN, Chandrashekara MS, Paramesh L, Madhava MS, Sannappa J, Pawar SD, Murugavel P, Kamra AK (2003) Radon and its short-lived progeny: variations near the ground. Radiat Meas 36:413–417

    Article  Google Scholar 

  • Kanawade V, Tripathi SN (2006) Evidence for the role of ion-induced particle formation during an atmospheric nucleation event observed in Tropospheric Ozone Production about the Spring Equinox (TOPSE). J Geophys Res 111:D02209. https://doi.org/10.1029/2005JD006366

    Article  Google Scholar 

  • Kanawade VP, Tripathi SN, Siingh D, Gautam AS, Srivastava AK, Kamra AK, Soni VK, Sethi V (2014) Observations of new particle formation at two distinct Indian subcontinental urban locations. Atmos Environ 96:370–379. https://doi.org/10.1016/j.atmosenv.2014.08.001

    Article  Google Scholar 

  • Kataoka T, Yunoki E, Shimizu M, Mori T, Tsukamoto O, Ohhashi Y, Sahashi K, Maitani T, Miyashita K, Fujikawa Y, Kudo A (1998) Diurnal variation in radon concentration and mixing-layer depth. Bound Layer Meteorol 89:225–250

    Article  Google Scholar 

  • Kojima H (1984) Relation between intermediate ions and meteorological factors. Res Lett Atmos Electr 4:49–53

    Google Scholar 

  • Kolarz P, Gaisberger M, Madl P, Hofmann W, Ritter M, Hartl A (2012) Characterization of ions at Alpine waterfalls. Atmos Chem Phys 12:3687–3697. https://doi.org/10.5194/acp-12-3687-2012

    Article  Google Scholar 

  • Kulmala M, Toivonen A, Mäkelä JM, Laaksonen A (1998) Analysis of the growth of nucleation mode particles observed in Boreal forest. Tellus B 50:449–462

    Article  Google Scholar 

  • Kulmala M, Vehkamaki H, Petaja T, Dal Maso M, Lauri A, Kerminen VM, Birmili W, McMurry PH (2004) Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 35:143–176

    Article  Google Scholar 

  • Kulmala M, Lehtinen KEJ, Laaksonen A (2006) Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration. Atmos Chem Phys 6:787–793. https://doi.org/10.5194/acp-6-787-2006

    Article  Google Scholar 

  • Kulmala M et al (2013) Direct observations of atmospheric aerosol nucleation. Science 339:943–946

    Article  Google Scholar 

  • Kumar S, Siingh D, Singh RP, Singh AK, Kamra AK (2018) Lightning discharges, cosmic rays and climate. Surv Geophys 39:861–899. https://doi.org/10.1007/s10712-018-9469-z

    Article  Google Scholar 

  • Laakso L, Petäjä T, Lehtinen KEJ, Kulmala M, Paatero J, Hõrrak U, Tammet H, Joutsensaari J (2004) Ion production rate in a Boreal forest based on ion, particle and radiation measurements. Atmos Chem Phys 4:1933–1943

    Article  Google Scholar 

  • Lee X, Gao Z, Zhang C, Chen C, Hu Y, Jain W, Liu S, Lu L, Sun J, Wang J, Zeng Z, Zhang Q, Zhao M, Zhou M (2015) Priorities for boundary–layer meteorology research in China. Bull Am Meterol Soc 96:149–151

    Article  Google Scholar 

  • Mäkelä J, Dal Maso M, Pirjola L, Keronen P, Laakso L, Kulmala M, Laaksonen A (2000) Charactristics of the atmospheric particle formation events observed at a Boreal forest site in southern Finland. Boreal Environ Res 5:299–313

    Google Scholar 

  • Mirme S, Mirme A (2013) The mathematical principles and design of the NAIS – a spectrometer for the measurement of cluster ion and nanometer aerosol size distributions. Atmos Meas Tech 6:1061–1071

    Article  Google Scholar 

  • Mirme A et al (2007) A wide-range multi-channel air ion spectrometer. Boreal Environ Res 12:247–264

    Google Scholar 

  • Misaki M (1964) Mobility spectrums of large ions in the New Mexico semi desert. J Geophys Res 69:3309–3318

    Article  Google Scholar 

  • Nilsson ED, Rannik Ü, Kulmala M, Buzorius G, O’dowd CD (2001a) Effects of continental boundary layer evolution, convection, turbulence and entrainment, on aerosol formation. Tellus B 53:441–461. https://doi.org/10.1034/j.1600-0889.2001.530409.x

    Article  Google Scholar 

  • Nilsson ED, Paatero J, Boy M (2001b) Effects of air masses and synoptic weather on aerosol formation in the continental boundary layer. Tellus B 53:462–478

    Article  Google Scholar 

  • O’Dowd CD, Aalto P, Hameri K, Kulmala M, Hoffmann T (2002a) Atmospheric particles from organic vapours. Nature 416:497–498

    Article  Google Scholar 

  • O’Dowd CD, Jimenez JL, Bahreini R, Flagan RC, Seinfeld JH, Pirjola L, Kulmala M, Jennings SG, Hoffmann T (2002b) Marine particle formation from biogenic iodine emissions. Nature 417:632–636

    Article  Google Scholar 

  • Pal S, Lee TR, Phelps S, De Wekker SF (2014) Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site. Sci Total Environ 496:424–434

    Article  Google Scholar 

  • Porstendorfer J (1994) Properties and behavior of Radon and thorn and their decay products in the air. J Aerosol Sci 25:219–263

    Article  Google Scholar 

  • Qian S, Sakurai H, McMurry PH (2007) Characteristics of regional nucleation events in urban East St. Louis. Atmos Environ 41:4119–4127

    Article  Google Scholar 

  • Salm J, Tammet H, Iher H, Horrak U (1992) The dependence of small air ion mobility spectra in the ground layer of the atmosphere on temperature and pressure. Acta Comment Univ Tartu 947:50–56

    Google Scholar 

  • Schumann RR, Owen DE, Asher-Bolinder S (1988) Weather factors affecting soil gas radon concentrations at a single site in the semiarid western US. In: Osborne MC, Harrison J (eds) Proceedings of the 1988 E.P.A. symposium on radon and radon reduction technology, vol 2. Poster presentation. Environmental Protection Agency Publication, 600/9-89-00613, p 3-1–3-13

  • Siingh D, Singh RP (2010) The role of cosmic rays in the Earth’s atmospheric processes. Pramana J Phys 74:153–168. https://doi.org/10.1007/s12043-010-0017-8

    Article  Google Scholar 

  • Siingh D, Pawar SD, Gopalakrishnan V, Kamra AK (2005) Measurements of the ion concentrations and conductivity over the Arabian Sea during the ARMEX. J Geophys Res 110:D18207. https://doi.org/10.1029/2005JD005765

    Article  Google Scholar 

  • Siingh D, Gopalakrishnan V, Singh RP, Kamra AK, Singh S, Pant V, Singh R, Singh AK (2007a) Atmospheric global electric circuit: an overview. Atmos Res 84:91–110

    Article  Google Scholar 

  • Siingh D, Pant V, Kamra AK (2007b) b Measurements of positive ions and air-Earth current density at Maitri, Antarctica. J Geophys Res 112:D13212. https://doi.org/10.1029/2006JD008101

    Article  Google Scholar 

  • Siingh D, Pant V, Kamra AK (2011) The ion–aerosol interaction from the ion mobility and aerosol particle size distribution measurements on January 17 and February 18 2005 at Maitri, Antarctica—a case study. J Earth Syst Sci 120:735–754

    Article  Google Scholar 

  • Siingh D, Pant V, Kamra AK (2013a) Temperature-dependence of the positive intermediate ion concentrations at Maitri, Antarctica. J Atmos Solar Terr Phys 104:67–74

    Article  Google Scholar 

  • Siingh D, Gautam AS, Kamra AK, Komsaare K (2013b) Nucleation events for the formation of charged aerosol particles at a tropical station-preliminary results. Atmos Res 132–133:239–252. https://doi.org/10.1016/j/atmosres.2013.05.024

    Article  Google Scholar 

  • Siingh D, Singh RP, Gopalakrishnan V, Singh RP (2013c) Fair-weather atmospheric electricity study at Maitri (Antarctica). Earth Planet Space 65:1541–1553. https://doi.org/10.5047/eps.2013.09.011

    Article  Google Scholar 

  • Siingh D, Gautam AS, Buchunde PS, Kamra AK (2018) Classification of the new particle formation events observed at a tropical site, Pune, India. Atmos Environ 190:10–22. https://doi.org/10.1016/j.atmosenv.2018.07.025

    Article  Google Scholar 

  • Singh AK, Siingh D, Singh RP (2011) Impact of galactic cosmic rays on Earth’s atmosphere and human health. Atmos Environ 45:3806–3818. https://doi.org/10.1016/j.atmosenv.2011.04.027

    Article  Google Scholar 

  • Sullivan RC, Crippa P, Matsui H, Leung LR, Zhao C, Thota A, Pryor SC (2018) New particle formation leads to cloud dimming. Npj Clim Atmos Sci 1:9. https://doi.org/10.1038/s41612-018-0019-7

    Article  Google Scholar 

  • Tammet H (1995) Size and mobility of nanometer particles, clusters and ions. J Aerosol Sci 26:459–475

    Article  Google Scholar 

  • Tammet H (1998) Reduction of air ion mobility to standard conditions. J Geophys Res 103:13933–13937

    Article  Google Scholar 

  • Tammet H, Horrak U, Laakso L, Kulmala M (2006) Factors of air ion balance in a coniferous forest according to measurements in Hyytiala, Finland. Atmos Chem Phys 6:3377–3390. https://doi.org/10.5194/acp-6-3377-2006

    Article  Google Scholar 

  • Tammet H, Komsaare K, Hõrrak U (2014) Intermediate ions in the atmosphere. Atmos Res 135–136:263–273. https://doi.org/10.1016/j.atmosres.2012.09.009

    Article  Google Scholar 

  • Vehkamaki H (2006) Classical nucleation theory in multicomnent systems. Springer, Berlin, pp 176. doi: https://doi.org/10.1007/3-540-31218-8

  • Victor NJ, Siingh D, Singh RP, Singh R, Kamra AK (2019) Diurnal and seasonal variations of Radon (222Rn) and their dependence on soil moisture and vertical stability of the lower atmosphere at Pune. India J Atmos Solar Terr Phys 195:105–118. https://doi.org/10.1016/j.jastp.2019.105118

    Article  Google Scholar 

  • Wagner R, Manninen HE, Franchin A, Lehtipalo K, Mirme S, Steiner G, Petäjä T, Kulmala M (2016) On the accuracy of ion measurements using a neutral cluster and air ion spectrometer. Boreal Environ Res 21:230–241

    Google Scholar 

  • Waring MS, Wells JR, Siegel JA (2011) Secondary organic aerosol formation from ozone reactions with single terpenoids and terpenoid mixtures. Atmos Environ 45:4235–4242

    Article  Google Scholar 

  • Weber RJ, Marti JJ, McMurry PH, Eisele FL, Tanner DJ, Jefferson A (1997) Measurements of new particle formation and ultrafine particle growth rates at a clean continental site. J Geophys Res 102:4375–4385

    Article  Google Scholar 

  • Wilson CTR (1924) The electric field of a thundercloud and some of its effects. Proc Phys Soc Lond 37:32D. https://doi.org/10.1088/1478-7814/37/1/314

    Article  Google Scholar 

  • Yu F (2007) Improved quasi-unary nucleation model for binary H2SO4-H2O homogeneous nucleation. J Chem Phys 127:054301

    Article  Google Scholar 

  • Yu F (2010) Ion-mediated nucleation in the atmosphere: key controlling parameters, implications, and look-up table. J Geophys Res 115:D03206. https://doi.org/10.1029/2009JD012630

    Article  Google Scholar 

  • Yu F, Turco RP (2000) Ultrafine aerosol formation via ion-mediated nucleation. Geophys Res Lett 27:883–886. https://doi.org/10.1029/1999GL011151

    Article  Google Scholar 

  • Yu F, Turco RP (2001) From molecular clusters to nanoparticles: role of ambient ionization in tropospheric aerosol formation. J Geophys Res 106:4797–4814. https://doi.org/10.1029/2000JD900539

    Article  Google Scholar 

  • Yu F, Turco RP (2008) Case studies of particle formation events observed in Boreal forests: implications for nucleation mechanisms. Atmos Chem Phys 8:6085–6102

    Article  Google Scholar 

  • Yu F, Turco RP (2011) The size-dependent charge fraction of sub-3-nm particles as a key diagnostic of competitive nucleation mechanisms under atmospheric conditions. Atmos Chem Phys 11:9451–9463

    Article  Google Scholar 

  • Yu F, Wang Z, Luo G, Turco RP (2008) Ion-mediated nucleation as an important global source of tropospheric aerosols. Atmos Chem Phys 8:2537–2554

    Article  Google Scholar 

  • Yu F, Luo G, Bates T, Anderson B, Clarke A, Kapustin V, Yantosca R, Wang Y, Wu S (2010) Spatial distributions of particle number concentrations in the global troposphere: simulations, observations, and implications for nucleation mechanisms. J Geophys Res 115:D17205. https://doi.org/10.1029/2009JD013473

    Article  Google Scholar 

Download references

Acknowledgements

The Indian Institute of Tropical Meteorology, Pune is supported by the Ministry of Earth Sciences, Government of India. Authors thank the India Meteorological Department Observatory at Pune for providing the meteorological data. Author thanks to Dr A. K. Kamra for valuable suggestions. This work is supported under the collaboration program of IITM, Pune, and BHU, Varanasi, India. We are thankful to the anonymous reviewers for their constructive comments and valuable suggestions to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JV and DS are responsible for inception and, execution of project and preparation of the draft of the manuscript. JV and DS analyzed the ion data and metrological data. JV, DS, RPS and ASG contributed towards the analysis and interpretation of the observations. DS prepared final draft of manuscript. SG associated with draft editing and writing. All authors contributed to the discussion of the results.

Corresponding authors

Correspondence to Devendraa Siingh, Alok Sagar Gautam or Sneha Gautam.

Ethics declarations

Conflict of Interests

It is declared that the authors have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nepolian, J.V., Siingh, D., Singh, R.P. et al. Analysis of Positive and Negative Atmospheric Air Ions During New Particle Formation (NPF) Events over Urban City of India. Aerosol Sci Eng 5, 460–477 (2021). https://doi.org/10.1007/s41810-021-00115-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41810-021-00115-4

Keywords

Navigation