Skip to main content
Log in

Effects of chemical corrosion and thermal shock on the properties of mullite- and cordierite-bonded porous SiC ceramics prepared using waste fly ash

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The chemical corrosion resistance properties of newly developed oxide (mullite-, cordierite)-bonded SiC ceramics prepared using mixture of waste fly ash and metal oxide additives were investigated in environments containing Na2SO4 at temperature 1000 °C for 8 h. The thermal shock resistance to cooling were evaluated as a function of quenching cycles. The changes in weight, flexural strength, and morphology due to thermal and chemical corrosion were examined. The mechanisms of flexural strength degradation due to chemical and thermal corrosion were analyzed, and the results were compared with literature data. In the hot corrosion by Na2SO4, the cordierite component was severely attacked in the cordierite-bonded SiC ceramics resulted ~ 34% strength degradation after 8 h corrosion; on the contrary, mullite-bonded SiC ceramics exhibited ~ 4% improvement of flexural strength. The chemical and thermal shock resistance results suggest a potential advantage of porous SiC ceramics prepared using waste fly ash for several industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Miwa, S., Abe, F., Hamanaka, T., Yamada, T., Miyairi, Y.: Diesel particulate filters made of newly developed SiC. SAE Int. J. Fuels Lubr. 110(4), 190–195 (2001). https://www.jstor.org/stable/44742632

  2. Gómez-Martín, A., Orihuela, M.P., Becerra, J.A., Martínez-Fernández, J., Ramírez-Rico, J.: Permeability and mechanical integrity of porous biomorphic SiC ceramics for application as hot-gas filters. Mater. Des. 107, 450–460 (2016). https://doi.org/10.1016/j.matdes.2016.06.060

    Article  CAS  Google Scholar 

  3. Dhiman, R., Johnson, E., Skou, E.M., Morgen, P., Andersen, S.M.: SiC nanocrystals as Pt catalyst supports for fuel cell applications. J. Mater. Chem. A 1(19), 6030–6036 (2013). https://doi.org/10.1039/C3TA10238F

    Article  CAS  Google Scholar 

  4. Bukhari, S.Z.A., Ha, J.H., Lee, J., Song, I.H.: Oxidation-bonded SiC membrane for microfiltration. J. Eur. Ceram. Soc. 38(4), 1711–1719 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.10.019

    Article  CAS  Google Scholar 

  5. Wang, F., Hao, S., Dong, B., Ke, N., Khan, N.Z., Hao, L., Yin, L., Xu, X., Agathopoulos, S.: Porous-foam mullite-bonded SiC-ceramic membranes for high-efficiency high-temperature particulate matter capture. J. Alloys. Compd. 893, 162231 (2022). https://doi.org/10.1016/j.jallcom.2021.162231

    Article  CAS  Google Scholar 

  6. Chen, C.Y., Chung, C.J., Wu, B.H., Li, W.L., Chien, C.W., Wu, P.H., Cheng, C.W.: Microstructure and lubricating property of ultra-fast laser pulse textured silicon carbide seals. Appl. Phys. A 107, 345–350 (2012). https://doi.org/10.1007/s00339-012-6822-9

    Article  CAS  Google Scholar 

  7. Valdez, B., Schorr, M., Zlatev, R., Carrillo, M., Stoytcheva, M., Alvarez, L., Rosas, N.: Corrosion Control in Industry. InTech. (2012). https://doi.org/10.5772/51987

  8. Fayomi, O.S.I., Akande, I.G., Odigie, S.: Economic impact of corrosion in oil sectors and prevention: an overview. J. Phys. (2007). https://doi.org/10.1088/1742-6596/1378/2/022037

    Article  Google Scholar 

  9. Eliaz, N., Shemesh, G., Latanision, R.M.: Hot corrosion in gas turbine components. Eng. Fail. Anal. 9(1), 31–43 (2002). https://doi.org/10.1016/S1350-6307(00)00035-2

    Article  CAS  Google Scholar 

  10. Baxter, D., Bellosi, A., Monteverde, F.: Oxidation and burner rig corrosion of liquid phase sintered SiC. J. Eur. Ceram. Soc. 20(3), 367–382 (2000). https://doi.org/10.1016/S0955-2219(99)00160-0

    Article  CAS  Google Scholar 

  11. Wu, S., Cheng, L., Zhang, L., Xu, Y., Luan, X., Mei, H.: Corrosion of SiC/SiC composite in Na2SO4 vapor environments from 1000 to 1500°C. Compos. A Appl. Sci. Manuf. 37(9), 1396–1401 (2006). https://doi.org/10.1016/j.compositesa.2005.07.010

    Article  CAS  Google Scholar 

  12. Cheng, S., Zhao, X., Yang, G., Wang, Y.: Salt-fog corrosion behavior of C/SiC and its effect on ablation resistance. J. Mat. Sci. Technol. 35(12), 2772–2777 (2019). https://doi.org/10.1016/j.jmst.2019.04.037

    Article  CAS  Google Scholar 

  13. Ip, S.Y., McNallan, M.J., Park, D.S.: Active oxidation of SiC-based ceramics in Ar–2%, Cl2 and O2 gas mixtures at 1000° C. J. Am. Ceram. Soc. 75(7), 1942–1948 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb07221.x

    Article  CAS  Google Scholar 

  14. Butt, D.P., Tressler, R.E., Spear, K.E.: Durability of SiC materials in gaseous N2-H2-CO Heat treatment environments. Center. Adv. Mater. Newslett. 5(1), 1–12 (1991)

    Google Scholar 

  15. Park, D.J., Jung, Y.I., Kim, H.G., Park, J.Y., Koo, Y.H.: Oxidation behavior of silicon carbide at 1200°C in both air and water–vapor-rich environments. Corros. Sci. 88, 416–422 (2014). https://doi.org/10.1016/j.corsci.2014.07.052

    Article  CAS  Google Scholar 

  16. Kim, H.E., Moorhead, A.J.: Effect of hydrogen water atmospheres on corrosion and flexural strength of sintered α-silicon carbide. J. Am. Ceram. Soc. 73(3), 694–699 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb06574.x

    Article  CAS  Google Scholar 

  17. Zhang, L., Zhang, M., He, X., Tang, W.: Chemical corrosion of liquid-phase sintered SiC in acidic/alkaline solutions part 1. Corrosion in HNO3 solution. J. Mater. Eng. Perform. 25, 839–844 (2016). https://doi.org/10.1007/s11665-016-1916-8

    Article  CAS  Google Scholar 

  18. Carruth, M., Baxter, D., Oliveira, F., Coley, K.: Hot-corrosion of silicon carbide in combustion gases at temperatures above the dew point of salts. J. Eur. Ceram. Soc. 18(16), 2331–2338 (1998). https://doi.org/10.1016/S0955-2219(98)00239-8

    Article  CAS  Google Scholar 

  19. Graziani, T., Baxter, D. J., Nannetti, C. A.: Degradation of silicon carbide-based materials in a high temperature combustion environment. Key Eng. Mater. 113, 153–166 (1995). https://www.scientific.net/KEM.113.153

  20. More, K.L., Tortorelli, P.F., Walker, L.R., Miriyala, N., Price, J.R., van Roode, M.: High temperature stability of SiC based composites in highwater vapour pressure environments. J. Am. Ceram. Soc. 86(8), 1272–1281 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03463.x

    Article  CAS  Google Scholar 

  21. Lvping, F., Huazhi, Gu., Ao, Huang, Siu, W., Yang, Z., Yongshun, Z., Meijie, Z.: Design, fabrication and properties of lightweight wear lining refractories: a review. J. Euro. Ceram. Soc. 42(3), 744–763 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.11.019

    Article  CAS  Google Scholar 

  22. Han, F., Xu, C., Wei, W., Zhang, F., Xu, P., Zhong, Z., Xing, W.: Corrosion behaviors of porous reaction-bonded silicon carbide ceramics incorporated with CaO. Ceram. Int. 44(11), 12225–12232 (2018). https://doi.org/10.1016/j.ceramint.2018.04.004

    Article  CAS  Google Scholar 

  23. Liu, Z., Zhang, H., Yan, Y., Wu, H., Yang, B., Li, Y., Huang, Z.: Corrosion of sintered SiC ceramics in mixed acid solution: temperature and time dependences. Corros. Eng. Sci. Technol. 52(1), 38–45 (2017). https://doi.org/10.1080/1478422X.2016.1179965

    Article  CAS  Google Scholar 

  24. Jiang, Q., Zhou, J., Miao, Y., Yang, S., Zhou, M., Zhong, Z., Xing, W.: Lower-temperature preparation of SiC ceramic membrane using zeolite residue as sintering aid for oil-in-water separation. J. Memb. Sci. 610, 118238 (2020). https://doi.org/10.1016/j.memsci.2020.118238

    Article  CAS  Google Scholar 

  25. Ding, S., Zeng, Y.P., Jiang, D.: Thermal shock resistance of in situ reaction bonded porous silicon carbide ceramics. Mat. Sci. Eng. A. 425(1–2), 326–329 (2006). https://doi.org/10.1016/j.msea.2006.03.075

    Article  CAS  Google Scholar 

  26. Jin, X., Dong, L., Xu, H., Liu, L., Li, N., Zhang, X., Han, J.: Effects of porosity and pore size on mechanical and thermal properties as well as thermal shock fracture resistance of porous ZrB2–SiC ceramics. Ceram. Int. 42(7), 9051–9057 (2016). https://doi.org/10.1016/j.ceramint.2016.02.164

    Article  CAS  Google Scholar 

  27. Parvanian, A.M., Salimijazi, H.R., Fathi, M., Saadatfar, M.: Synthesis and thermal shock evaluation of porous SiC ceramic foams for solar thermal applications. J. Am. Ceram. Soc. 102(4), 2009–2020 (2019). https://doi.org/10.1111/jace.16007

    Article  CAS  Google Scholar 

  28. Xu, X., Song, J., Wu, J., Zhang, Y., Zhou, Y., Zhang, Q.: Preparation and thermal shock resistance of mullite and corundum Co-bonded SiC ceramics for solar thermal storage.J. Wuhan Univ. Technol.-Mat. Sci. Ed. 35, 16–25 (2020). https://doi.org/10.1007/s11595-020-2221-9

    Article  CAS  Google Scholar 

  29. Ding, S., Zeng, Y.P., Jiang, D.: Thermal shock behaviour of mullite-bonded porous silicon carbide ceramics with yttria addition. J. Phys. D Appl. Phys. 40(7), 2138–2142 (2007). https://doi.org/10.1088/0022-3727/40/7/042

    Article  CAS  Google Scholar 

  30. Baitalik, S., Kayal, N.: Thermal shock and chemical corrosion resistance of oxide bonded porous SiC ceramics prepared by infiltration technique. J. of Alloys and Comp. 781, 289 (2019)

    Article  CAS  Google Scholar 

  31. Das, D., Kayal, N.: Influence of additive contents on the properties of SiC ceramic membranes and their performance in oil-water separation. Int. J. appl. Ceram. Technol. 20(3), 1715–1729 (2023). https://doi.org/10.1111/ijac.14334

    Article  CAS  Google Scholar 

  32. Das, D., Kayal, N.: Properties and performance of cordierite bonded porous silicon carbide membrane prepared using waste fly ash and other oxide additives. Bull Mat Sci. 46, 169 (2023). https://doi.org/10.1007/s12034-023-03004-3

    Article  CAS  Google Scholar 

  33. Tressler, R.E., Meiser, M.D., Yonushonis, T.: Molten salt corrosion of SiC and Si3N4 ceramics. J. Am. Ceram. Soc. 59(5–6), 278–279 (1976). https://doi.org/10.1111/j.1151-2916.1976.tb10962.x

    Article  CAS  Google Scholar 

  34. Jacobson, N.S., Smialek, J.L.: Hot corrosion of sintered α-SiC at 1000° C. J. Am. Ceram. Soc. 68(8), 432–439 (1985). https://doi.org/10.1111/j.1151-2916.1985.tb10170.x

    Article  CAS  Google Scholar 

  35. Fielder, W. L.: Oxidation and hot corrosion of hot-pressed Si3N4 at 1000°C. (1985). https://ntrs.nasa.gov/api/citations/19850013048/downloads/19850013048

  36. Richet, P., Bottinga, Y., Denielou, L., Petitet, J.P., Tequi, C.: Thermodynamic properties of quartz, cristobalite and amorphous SiO2: drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K. Geochim. Cosmochim. Acta 46(12), 2639–2658 (1982). https://doi.org/10.1016/0016-7037(82)90383-0

    Article  CAS  Google Scholar 

  37. Ringdalen, E.: Changes in quartz during heating and the possible effects on Si production. J. Met. Mater. Miner. 67, 484–492 (2015). https://doi.org/10.1007/s11837-014-1149-y

    Article  CAS  Google Scholar 

  38. Holmquist, S.B.: Conversion of quartz to tridymite. J. Am. Ceram. Soc. 44(2), 82–86 (1961). https://doi.org/10.1111/j.1151-2916.1961.tb15355.x

    Article  Google Scholar 

  39. Polyakova, I.G.: The main silica phases and some of their properties. In: Schmelzer, J.W.P. (ed.) Glass: selected properties and crystallization, pp. 197–268. De Gruyter, Berlin (2014)

    Chapter  Google Scholar 

  40. Jacobson, N.S., Fox, D.S., Smialek, J.L., Deliacorte, C., Lee, K.N.: Performance of ceramics in severe environments. Patent No. E-14992. (2005). https://ntrs.nasa.gov/api/citations/20050060620/downloads/20050060620

  41. Swainson, I.P., Dove, M.T.: On the thermal expansion of β-cristobalite. Phys. Chem. Miner. 22(1), 61–65 (1995). https://doi.org/10.1007/BF00202681

    Article  CAS  Google Scholar 

  42. Bianco, R., Jacobson, N.: Corrosion of cordierite ceramics by sodium sulphate at 1000°C. J. Mater. Sci. 24, 2903–2910 (1989). https://doi.org/10.1007/BF02385645

    Article  CAS  Google Scholar 

  43. Takahashi, J., Kawai, Y., Shimada, S.: Hot corrosion of cordierite/mullite composites by Na-salts. J. Eur. Ceram. Soc. 22(12), 1959–1969 (2002). https://doi.org/10.1016/S0955-2219(01)00529-5

    Article  CAS  Google Scholar 

  44. She, J., Ohji, T., Deng, Z.Y.: Thermal shock behavior of porous silicon carbide ceramics. J. Am. Ceram. Soc. 85(8), 2125–2127 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00418.x

    Article  CAS  Google Scholar 

  45. Jin, X., Zhang, X., Han, J., Hu, P., He, R.: Thermal shock behavior of porous ZrB2–SiC ceramics. Mater. Sci. Eng. A.588, 175–180 (2013). https://doi.org/10.1016/j.msea.2013.09.046

  46. Wang, C., Jiand, Y. S.: Thermal shock damage evaluation of porous refractory by finite element method. In Defect and Diffusion Forum, vol. 312–315, pp. 1032–1037. Trans. Tech. Publications Ltd. (2011). https://doi.org/10.4028/www.scientific.net/ddf.312-315.1032

  47. Kingery, W.D.: Factors affecting thermal stress resistance of ceramic materials. J. Am. Ceram. Soc. 38(1), 3–15 (1955). https://doi.org/10.1111/j.1151-2916.1955.tb14545.x

    Article  Google Scholar 

  48. Lu, T.J., Fleck, N.A.: The thermal shock resistance of solids. Acta Mater. 46(13), 4755–4768 (1998). https://doi.org/10.1016/S1359-6454(98)00127-X

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank SERB, Department of Science and Technology, Government of India (GAP-0380), for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nijhuma Kayal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santra, N., Das, D. & Kayal, N. Effects of chemical corrosion and thermal shock on the properties of mullite- and cordierite-bonded porous SiC ceramics prepared using waste fly ash. J Aust Ceram Soc 60, 55–64 (2024). https://doi.org/10.1007/s41779-023-00959-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00959-8

Keywords

Navigation