Skip to main content
Log in

Dopant incorporation into TiO2 semiconductor materials for optical, electronic, and physical property enhancement: doping strategy and trend analysis

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Doping of semiconductor materials can significantly alter the characteristics of the intrinsic semiconductors. The titanium dioxide (TiO2) has been doped with a variety of dopants to yield enhanced optical, electronic, and mechanical properties. Such dopants in the original lattice of TiO2 produce defect sites with segregation and accumulation of ions on the grain boundaries. The segregation of ions results in the decreased conductivity of the TiO2. Aside from the ion segregation, the diffusion of ions into the TiO2 may subsequently alter the grain boundaries arrangement by either increasing or reducing the barrier height. The ability to tailor the crystalline arrangement is highly dependent on the nature of the dopant employed. Therefore, it is important to understand the roll of the dopants and control the doping process in order to modify the grain boundary and thus band gap structure of the doped TiO2. This article provides a comprehensive review of the TiO2 doping with four different types of dopants in view of their impact on optical, electronic, and mechanical properties in order to obtain optimized characteristics. Significant application of doped TiO2 as a photocatalyst and surge protector is briefly discussed on the basis of optical, electronic and mechanical properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Speight, J.G.: Chapter Three. In: Speight, J.G.B.T.-E.I.C. for E (ed.) Industrial inorganic chemistry, pp. 111–169. Butterworth-Heinemann (2017) ISBN 978-0-12-849891-0

    Google Scholar 

  2. Al-Jawad, S.M.H., Ismail, M.M., Ghazi, S.F.: Characteristics of Ni-doped TiO2 nanorod array films. J Aust Ceram Soc. 57, 295–304 (2021). https://doi.org/10.1007/s41779-020-00530-9

    Article  CAS  Google Scholar 

  3. Jadhav, P.S., Jadhav, T., Bhosale, M., Jadhav, C.H., Pawar, V.C.: Structural and optical properties of N-doped TiO2 nanomaterials. Mater Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.07.164

  4. Yadav, S.P., Pande, M., Manohar, R., Singh, S.: Applicability of TiO2 nanoparticle towards suppression of screening effect in nematic liquid crystal. J Mol Liq. 208, 34–37 (2015). https://doi.org/10.1016/j.molliq.2015.04.031

    Article  CAS  Google Scholar 

  5. Rodriguez, O., Stone, W., Schemitsch, E.H., Zalzal, P., Waldman, S., Papini, M., Towler, M.R.: Titanium addition influences antibacterial activity of bioactive glass coatings on metallic implants. Heliyon. 3, e00420 (2017). https://doi.org/10.1016/j.heliyon.2017.e00420

    Article  PubMed  PubMed Central  Google Scholar 

  6. Danail, G., Nikolay, F., Stoyan, D.: Classification, properties and application of titanium and its alloys. Proceedings of University of Ruse. 55, 27–32 (2016)

    Google Scholar 

  7. Jorge, J.R.P., Barão, V.A., Delben, J.A., Faverani, L.P., Queiroz, T.P., Assunção, W.G.: Titanium in dentistry: historical development, state of the art and future perspectives. J Indian Prosthodont Soc. 13, 71–77 (2013). https://doi.org/10.1007/s13191-012-0190-1

    Article  PubMed  Google Scholar 

  8. Anitha, V.C., Banerjee, A.N., Joo, S.W.: Recent developments in TiO2 as N- and p-type transparent semiconductors: synthesis, modification, properties, and energy-related applications. J Mater Sci. 50, 7495–7536 (2015). https://doi.org/10.1007/s10853-015-9303-7

    Article  CAS  Google Scholar 

  9. Nowotny, M.K., Bogdanoff, P., Dittrich, T., Fiechter, S., Fujishima, A., Tributsch, H.: Observations of P-type semiconductivity in titanium dioxide at room temperature. Mater Lett. 64, 928–930 (2010). https://doi.org/10.1016/j.matlet.2010.01.061

    Article  CAS  Google Scholar 

  10. Coronado, J., Fresno, F., Hernández-Alonso, M., Portela, R., Suárez, S., García Rodríguez, S., de la Peña O’Shea, V.: Design of advanced photocatalytic materials for energy and environmental applications, vol. 71, (2013) ISBN 978-1-4471-5060-2.

    Book  Google Scholar 

  11. Li, K., Peng, B., Peng, T.: Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 6, 7485–7527 (2016). https://doi.org/10.1021/acscatal.6b02089

    Article  CAS  Google Scholar 

  12. Wu, S., Ishisone, K., Sheng, Y., Manuputty, M.Y., Kraft, M., Xu, R.: TiO2with controllable oxygen vacancies for efficient isopropanol degradation: photoactivity and reaction mechanism. Catal. Sci. Technol. 11, 4060–4071 (2021). https://doi.org/10.1039/d1cy00417d

    Article  CAS  Google Scholar 

  13. Islam, M.N., Podder, J., Hossain, K.S., Sagadevan, S.: Band gap tuning of P-type al-doped Tio2 thin films for gas sensing applications. Thin Solid Films. 714, 138382 (2020). https://doi.org/10.1016/j.tsf.2020.138382

    Article  CAS  Google Scholar 

  14. Arifin, K., Yunus, R.M., Minggu, L.J., Kassim, M.B.: Improvement of TiO2 nanotubes for photoelectrochemical water splitting: review. Int J Hydrog Energy. 46, 4998–5024 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.063

    Article  CAS  Google Scholar 

  15. Li, X., Xiong, J., Huang, J., Feng, Z., Luo, J.: Novel G-C3N4/h’ZnTiO3-a’TiO2 direct Z-scheme heterojunction with significantly enhanced visible-light photocatalytic activity. J Alloys Compd. 774 (2018). https://doi.org/10.1016/j.jallcom.2018.10.034

  16. Javed, H.M.A., Ahmad, M.I., Que, W., Qureshi, A.A., Sarfaraz, M., Hussain, S., Iqbal, M.Z., Zubair Nisar, M., Shahid, M., AlGarni, T.S.: Encapsulation of TiO2 nanotubes with Cs nanoparticles to enhance electron injection and thermal stability of perovskite solar cells. Surf Interfaces. 23, 101033 (2021). https://doi.org/10.1016/j.surfin.2021.101033

    Article  CAS  Google Scholar 

  17. Ren, X., Philo, D., Li, Y., Shi, L., Chang, K., Ye, J.: Recent advances of low-dimensional phosphorus-based nanomaterials for solar-driven photocatalytic reactions. Coord Chem Rev. 424, 213516 (2020). https://doi.org/10.1016/j.ccr.2020.213516

    Article  CAS  Google Scholar 

  18. Wang, W., Li, X., Deng, F., Liu, J., Gao, X., Huang, J., Xu, J., Feng, Z., Chen, Z., Han, L.: Novel organic/inorganic PDI-urea/BiOBr S-scheme heterojunction for improved photocatalytic antibiotic degradation and H2O2 production. Chin Chem Lett. 33, 5200–5207 (2022). https://doi.org/10.1016/j.cclet.2022.01.058

    Article  CAS  Google Scholar 

  19. Guskos, N., Zolnierkiewicz, G., Guskos, A., Aidinis, K., Wanag, A., Kusiak-Nejman, E., Narkiewicz, U., Morawski, A.W.: Magnetic moment centers in titanium dioxide photocatalysts loaded on reduced graphene oxide flakes. Rev Adv Mater Sci. 60, 57–63 (2021). https://doi.org/10.1515/rams-2021-0012

    Article  CAS  Google Scholar 

  20. Harris-Lee, T.R., Zhang, Y., Bowen, C.R., Fletcher, P.J., Zhao, Y., Guo, Z., Innocent, J.W.F., Andrew, S., Johnson, L., Marken, F.: Photo-chlorine production with hydrothermally grown and vacuum-annealed nanocrystalline rutile. https://doi.org/10.1007/s12678-020

  21. Li, X., Xiong, J., Xu, Y., Feng, Z., Huang, J.: Defect-assisted surface modification enhances the visible light photocatalytic performance of g-C3N4@C-TiO2 direct Z-scheme heterojunctions. Chin J Catal. 40, 424–433 (2019). https://doi.org/10.1016/S1872-2067(18)63183-3

    Article  CAS  Google Scholar 

  22. Li, X., Zhang, H., Luo, J., Feng, Z., Huang, J.: Hydrothermal synthesized novel nanoporous G-C3N4/MnTiO3 heterojunction with direct Z-scheme mechanism. Electrochim Acta. 258, 998–1007 (2017). https://doi.org/10.1016/j.electacta.2017.11.151

    Article  CAS  Google Scholar 

  23. Armaković, S., Savanović, M., Armaković, S.: Titanium dioxide as the most used photocatalyst for water purification: an overview. Catalysts. 13, 26 (2023). https://doi.org/10.3390/catal13010026

    Article  CAS  Google Scholar 

  24. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., Bahnemann, D.W.: Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev. 114, 9919–9986 (2014). https://doi.org/10.1021/cr5001892

    Article  CAS  PubMed  Google Scholar 

  25. Elahifard, M., Sadrian, M.R., Mirzanejad, A., Behjatmanesh-Ardakani, R., Ahmadvand, S.: Dispersion of defects in TiO2 semiconductor: oxygen vacancies in the bulk and surface of rutile and anatase. Catalysts. 10, (2020). https://doi.org/10.3390/catal10040397

  26. Pan, X., Yang, M.-Q., Fu, X., Zhang, N., Xu, Y.-J.: Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale. 5, 3601–3614 (2013). https://doi.org/10.1039/C3NR00476G

    Article  CAS  PubMed  Google Scholar 

  27. Alexander, J.C. TiO2 Thin Films on Fused Silica; 2016; ISBN 9783319342290.

    Book  Google Scholar 

  28. Bhogra, A., Masarrat, A., Hasina, D., Meena, R., Kumar, A., Som, T., Dong, C.-L., Chen, C.-L., Kandasami, A.: Defects assisted structural and electrical properties of Ar ion irradiated TiO2/SrTiO3 bilayer. Mater Lett. 282, 128880 (2021). https://doi.org/10.1016/j.matlet.2020.128880

    Article  CAS  Google Scholar 

  29. Rana, D.K.; Basu, S. Chapter 22 - Resistive memory device with piezoelectric and ferroelectric thin films by solution synthesis. In; Das, S., Dhara, S.B.T.-C.S.S. for M.D. and T.F.D.A., Eds.; Elsevier, 2021; pp. 679–695 ISBN 978-0-12-819718-9.

    Google Scholar 

  30. Martín-Palma, R.J., Martínez-Duart, J.M.: Review of semiconductor physics. In: Nanotechnology for Microelectronics and Photonics, pp. 51–80 (2017). https://doi.org/10.1016/b978-0-323-46176-4.00003-1

    Chapter  Google Scholar 

  31. Xu, J., Teng, Y., Teng, F.: Effect of surface defect states on valence band and charge separation and transfer efficiency. Sci Rep. 6, 1–9 (2016). https://doi.org/10.1038/srep32457

    Article  CAS  Google Scholar 

  32. Mirzayi, M.: The effect of TiO2 concentration on the electrical and microstructural properties of ZnO-base varistor ceramic prepared from nanosize ZnO particles. Adv Appl Ceram. 119, 373–379 (2020). https://doi.org/10.1080/17436753.2020.1762047

    Article  CAS  Google Scholar 

  33. Sukhadeve, G.K., Janbandhu, S.Y., Upadhyay, S., Gedam, R.S.: Investigation of photocatalytic activity of TiO2 nanoparticles synthesized by sol–gel technique. J Aust Ceram Soc. 58, 39–48 (2022). https://doi.org/10.1007/s41779-021-00658-2

    Article  CAS  Google Scholar 

  34. Huang, F., Yan, A., Zhao, H.: Influences of doping on photocatalytic properties of TiO2 photocatalyst. (2016). https://doi.org/10.5772/63234

  35. Parveen, B., Mahmood-Ul-Hassan, Khalid, Z., Riaz, S., Naseem, S.: Room-temperature ferromagnetism in Ni-doped TiO2 diluted magnetic semiconductor thin films. J Appl Res Technol. 15, 132–139 (2017). https://doi.org/10.1016/j.jart.2017.01.009

    Article  Google Scholar 

  36. Zaleska, A.: Doped-TiO2: a review. Recent Pat Eng. 2, 157–164 (2008). https://doi.org/10.2174/187221208786306289

    Article  CAS  Google Scholar 

  37. Ibrahim, N.S., Leaw, W.L., Mohamad, D., Alias, S.H., Nur, H.: A critical review of metal-doped TiO2 and its structure–physical properties–photocatalytic activity relationship in hydrogen production. Int J Hydrog Energy. 45, 28553–28565 (2020). https://doi.org/10.1016/j.ijhydene.2020.07.233

    Article  CAS  Google Scholar 

  38. Piotkowska, A., Janus, M., Szymanski, K., Mozia, S.: C-,N- and S-doped TiO 2 photocatalysts: a review. Catalysts. 11, 144 (2021)

    Article  Google Scholar 

  39. Munir, S., Dionysiou, D.D., Khan, S.B., Shah, S.M., Adhikari, B., Shah, A.: Development of photocatalysts for selective and efficient organic transformations. J Photochem Photobiol B. 148, 209–222 (2015). https://doi.org/10.1016/j.jphotobiol.2015.04.020

    Article  CAS  PubMed  Google Scholar 

  40. Sohrabi, S., Keshavarz Moraveji, M., Iranshahi, D.: A review on the design and development of photocatalyst synthesis and application in microfluidic reactors: challenges and opportunities. Rev Chem Eng. 36, 687–722 (2020). https://doi.org/10.1515/revce-2018-0013

    Article  CAS  Google Scholar 

  41. Kuang, J., Xing, Z., Yin, J., Li, Z., Tan, S., Li, M., Jiang, J., Zhu, Q., Zhou, W.: Ti3+ self-doped rutile/anatase/TiO2(B) mixed-crystal tri-phase heterojunctions as effective visible-light-driven photocatalysts. Arab J Chem. 13, 2568–2578 (2020). https://doi.org/10.1016/j.arabjc.2018.06.010

    Article  CAS  Google Scholar 

  42. Na, S., Seo, S., Lee, H.: Recent developments of advanced Ti3+-self-doped TiO2 for efficient visible-light-driven photocatalysis. Catalysts. 10, 13–17 (2020). https://doi.org/10.3390/catal10060679

    Article  CAS  Google Scholar 

  43. Zuo, F., Wang, L., Wu, T., Zhang, Z., Borchardt, D., Feng, P.: Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc. 132, 11856–11857 (2010). https://doi.org/10.1021/ja103843d

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, J., Tian, B., Wang, L., Xing, M., Lei, J.: Preparation of reduced TiO2–x for photocatalysis. In: Photocatalysis. Lecture Notes in Chemistry, vol 100. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-2113-9_4

  45. Zhang, Q., Li, C.: Pure anatase phase titanium dioxide films prepared by mist chemical vapor deposition. Nanomaterials. 8, (2018). https://doi.org/10.3390/nano8100827

  46. Kitamura, Y., Okinaka, N., Shibayama, T., Prieto, O., Kusano, D., Ohtani, B., Akiyama, T.: Combustion synthesis of TiO 2 nanoparticles as photocatalyst. Powder Technol. 176, 93–98 (2007). https://doi.org/10.1016/j.powtec.2007.02.009

    Article  CAS  Google Scholar 

  47. Sane, P., Chaudhari, S., Nemade, P., Sontakke, S.: Photocatalytic reduction of chromium (VI) using combustion synthesized TiO2. J Environ Chem Eng. 6, 68–73 (2018). https://doi.org/10.1016/j.jece.2017.11.060

    Article  CAS  Google Scholar 

  48. Wu, C., Gao, Z., Gao, S., Wang, Q., Xu, H., Wang, Z., Huang, B., Dai, Y.: Ti3+ Self-doped TiO2 photoelectrodes for photoelectrochemical water splitting and photoelectrocatalytic pollutant degradation. J Energy Chem. 25, 726–733 (2016). https://doi.org/10.1016/j.jechem.2016.04.009

    Article  Google Scholar 

  49. Rafique, M., Hajra, S., Irshad, M., Usman, M., Imran, M., Assiri, M., Ashraf, W.: Hydrogen production using TiO 2 -based photocatalysts: a comprehensive review. ACS Omega. (2023). https://doi.org/10.1021/acsomega.3c00963

  50. Qi, D., Lu, L., Xi, Z., Wang, L., Zhang, J.: Enhanced photocatalytic performance of TiO2 based on synergistic effect of Ti3+ self-doping and slow light effect. Appl Catal B. 160–161, 621–628 (2014). https://doi.org/10.1016/j.apcatb.2014.06.020

    Article  CAS  Google Scholar 

  51. Sasan, K., Zuo, F., Wang, Y., Feng, P.: Self-doped Ti3+-TiO2 as a photocatalyst for the reduction of CO2 into a hydrocarbon fuel under visible light irradiation. Nanoscale. 7, 13369–13372 (2015). https://doi.org/10.1039/c5nr02974k

    Article  CAS  PubMed  Google Scholar 

  52. Fu, R., Gao, S., Xu, H., Wang, Q., Wang, Z., Huang, B., Dai, Y.: Fabrication of Ti3+ self-doped TiO2(A) nanoparticle/TiO2(R) nanorod heterojunctions with enhanced visible-light-driven photocatalytic properties. RSC Adv. 4, 37061–37069 (2014). https://doi.org/10.1039/c4ra06152g

    Article  CAS  Google Scholar 

  53. Motola, M., Čaplovičová, M., Krbal, M., Sopha, H., Thirunavukkarasu, G.K., Gregor, M., Plesch, G., Macak, J.M.: Ti3+ doped anodic single-wall TiO2 nanotubes as highly efficient photocatalyst. Electrochim Acta. 331, (2020). https://doi.org/10.1016/j.electacta.2019.135374

  54. Xin, X., Xu, T., Wang, L., Wang, C.: Ti3+-self doped brookite TiO2 single-crystalline nanosheets with high solar absorption and excellent photocatalytic CO2 reduction. Sci Rep. 6, 1–8 (2016). https://doi.org/10.1038/srep23684

    Article  CAS  Google Scholar 

  55. Kim, J., Choi, D., Jeong, K.S.: Self-doped colloidal semiconductor nanocrystals with intraband transitions in steady state. Chem Commun. 54, 8435–8445 (2018). https://doi.org/10.1039/C8CC02488J

    Article  CAS  Google Scholar 

  56. Zhang, X., Zhang, L.: Electronic and band structure tuning of ternary semiconductor photocatalysts by self doping: the case of BiOI. J Phys Chem C. 114, (2010). https://doi.org/10.1021/jp105118m

  57. Liao, W., Yang, J., Zhou, H., Murugananthan, M., Zhang, Y.: Electrochemically self-doped Tio2 nanotube arrays for efficient visible light photoelectrocatalytic degradation of contaminants. Electrochim Acta. 136, 310–317 (2014). https://doi.org/10.1016/j.electacta.2014.05.091

    Article  CAS  Google Scholar 

  58. Vasseghian, Y., Khataee, A., Dragoi, E.N., Moradi, M., Nabavifard, S., Oliveri Conti, G., Mousavi Khaneghah, A.: Pollutants degradation and power generation by photocatalytic fuel cells: a comprehensive review. Arab J Chem. 13, 8458–8480 (2020)

    Article  CAS  Google Scholar 

  59. Mao, C., Zuo, F., Hou, Y., Bu, X., Feng, P.: In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction. Angew Chem. 53, 10485–10489 (2014). https://doi.org/10.1002/anie.201406017

    Article  CAS  Google Scholar 

  60. Qing, Y., Li, Y., Li, W., Yao, H.: Ti3+ Self-doped dark TiO2 nanoparticles with tunable and unique dielectric properties for electromagnetic applications. J Mater Chem. 9, 1205–1214 (2021). https://doi.org/10.1039/D0TC05112H

    Article  CAS  Google Scholar 

  61. Schwarze, M., Borchardt, S., Frisch, M.L., Collis, J., Walter, C., Menezes, P.W., Strasser, P., Driess, M., Tasbihi, M.: Degradation of phenol via an advanced oxidation process (AOP) with immobilized commercial titanium dioxide (TiO2) photocatalysts. Nanomaterials. 13, (2023). https://doi.org/10.3390/nano13071249

  62. Xiu, Z., Xing, Z., Li, Z., Wu, X., Yan, X., Hu, M., Cao, Y., Yang, S., Zhou, W.: Ti3+-TiO2/Ce3+-CeO2 nanosheet heterojunctions as efficient visible-light-driven photocatalysts. Mater Res Bull. 100, 191–197 (2018). https://doi.org/10.1016/j.materresbull.2017.12.016

    Article  CAS  Google Scholar 

  63. Bettinelli, M., Dallacasa, V., Falcomer, D., Fornasiero, P., Gombac, V., Montini, T., Romanò, L., Speghini, A.: Photocatalytic activity of TiO2 doped with boron and vanadium. J Hazard Mater. 146, 529–534 (2007). https://doi.org/10.1016/j.jhazmat.2007.04.053

    Article  CAS  PubMed  Google Scholar 

  64. Siuzdak, K., Szkoda, M., Lisowska-Oleksiak, A., Grochowska, K., Karczewski, J., Ryl, J.: Thin layer of ordered boron-doped TiO 2 nanotubes fabricated in a novel type of electrolyte and characterized by remarkably improved photoactivity. Appl Surf Sci. 357, 942–950 (2015). https://doi.org/10.1016/j.apsusc.2015.09.130

    Article  CAS  Google Scholar 

  65. Sulaiman, S.N.A., Zaky Noh, M., Nadia Adnan, N., Bidin, N., Ab Razak, S.N.: Effects of photocatalytic activity of metal and non-metal doped Tio2 for hydrogen production enhancement - a review. J Phys Conf Ser. 1027, (2018). https://doi.org/10.1088/1742-6596/1027/1/012006

  66. Kuo, C.Y., Jheng, H.K., Syu, S.E.: Effect of non-metal doping on the photocatalytic activity of titanium dioxide on the photodegradation of aqueous bisphenol A. Environ Technol. 0, 1–24 (2019). https://doi.org/10.1080/09593330.2019.1674930

    Article  CAS  Google Scholar 

  67. Ratova, M., West, G.T., Kelly, P.J., Xia, X., Gao, Y.: Synergistic effect of doping with nitrogen and molybdenum on the photocatalytic properties of thin titania films. Vacuum. 114, 205–212 (2015). https://doi.org/10.1016/j.vacuum.2014.10.012

    Article  CAS  Google Scholar 

  68. Liu, D., Tian, R., Wang, J., Nie, E., Piao, X., Li, X., Sun, Z.: Photoelectrocatalytic degradation of methylene blue using F doped TiO2 photoelectrode under visible light irradiation. Chemosphere. 185, 574–581 (2017). https://doi.org/10.1016/j.chemosphere.2017.07.071

    Article  CAS  PubMed  Google Scholar 

  69. Deng, L., Chen, Y., Yao, M., Wang, S., Zhu, B., Huang, W., Zhang, S.: Synthesis, Characterization of B-doped TiO2 nanotubes with high photocatalytic activity. J Solgel Sci Technol. 53, 535–541 (2010). https://doi.org/10.1007/s10971-009-2128-6

    Article  CAS  Google Scholar 

  70. Yang, K., Dai, Y., Huang, B.: Origin of the photoactivity in boron-doped anatase and rutile Ti O2 calculated from first principles. Phys Rev B. 76, 1–6 (2007). https://doi.org/10.1103/PhysRevB.76.195201

    Article  CAS  Google Scholar 

  71. Barzykin, A.V., Tachiya, M.: Mechanism of charge recombination in dye-sensitized nanocrystalline semiconductors: random flight model. J Phys Chem B. 106, 4356–4363 (2002). https://doi.org/10.1021/jp012957+

    Article  CAS  Google Scholar 

  72. Mansingh, S., Das, K.K., Behera, A., Subudhi, S., Sultana, S., Parida, K.: Bandgap engineering via boron and sulphur doped carbon modified anatase TiO2: a visible light stimulated photocatalyst for photo-fixation of N2 and TCH degradation. Nanoscale Adv. 2, 2004–2017 (2020). https://doi.org/10.1039/d0na00183j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Japa, M., Tantraviwat, D., Phasayavan, W., Nattestad, A., Chen, J., Inceesungvorn, B.: Simple preparation of nitrogen-doped TiO2 and its performance in selective oxidation of benzyl alcohol and benzylamine under visible light. Colloids Surf A Physicochem Eng Asp. 610, 125743 (2021). https://doi.org/10.1016/j.colsurfa.2020.125743

    Article  CAS  Google Scholar 

  74. Zhao, Z., Zhao, X., Yi, J., Liu, Q.: Effects of nonmetal doping on electronic structures and optical property of anatase TiO2 from first-principles calculations. Rare Metal Mat Eng. 44, 1568–1574 (2015). https://doi.org/10.1016/s1875-5372(15)30094-1

    Article  CAS  Google Scholar 

  75. Fadlallah, M.M.: Magnetic, electronic, optical, and photocatalytic properties of nonmetal- and halogen-doped anatase TiO2 nanotubes. Physica E Low Dimens. Syst. Nanostruct. 89, 50–56 (2017). https://doi.org/10.1016/j.physe.2017.02.003

    Article  CAS  Google Scholar 

  76. Huang, Z., Gao, Z., Gao, S., Wang, Q., Wang, Z., Huang, B., Dai, Y.: Facile synthesis of S-doped reduced TiO2-x with enhanced visible-light photocatalytic performance. Chin J Catal. 38, 821–830 (2017). https://doi.org/10.1016/S1872-2067(17)62825-0

    Article  CAS  Google Scholar 

  77. Pérez, J.A.B., Courel, M., Pal, M., Delgado, F.P., Mathews, N.R.: Effect of ytterbium doping concentration on structural, optical and photocatalytic properties of TiO2 thin films. Ceram Int. 43, 15777–15784 (2017). https://doi.org/10.1016/j.ceramint.2017.08.141

    Article  CAS  Google Scholar 

  78. Li, G., Zou, B., Feng, S., Shi, H., Liao, K., Wang, Y., Wang, W., Zhang, G.: Synthesis of N-doped TiO2 with good photocatalytic property. Phys B Condens Matter. 588, 412184 (2020). https://doi.org/10.1016/j.physb.2020.412184

    Article  CAS  Google Scholar 

  79. Kwak, C.H., Im, U.S., Seo, S.W., Kim, M.I., Huh, Y.S., Im, J.S.: Effects of carbon doping on TiO2 for enhanced visible light-driven NO sensing performance. Mater Lett. 288, 2–5 (2021). https://doi.org/10.1016/j.matlet.2021.129313

    Article  CAS  Google Scholar 

  80. Muzakkar, M.Z.; Maulidiyah, M.; Ningsi, N.; Salim, L.O.A.; Istiqamah, R.N.; Musdalifah, A.; Nurdin, M. High photoelectrocatalytic activity of selenium (Se) doped TiO2/Ti electrode for degradation of reactive orange 84. J Phys Conf Ser 2021, 1899, 0–7, https://doi.org/10.1088/1742-6596/1899/1/012046.

  81. Filippatos, P.P., Kelaidis, N., Vasilopoulou, M., Davazoglou, D., Lathiotakis, N.N., Chroneos, A.: Defect processes in F and Cl doped anatase TiO2. Sci Rep. 9, (2019). https://doi.org/10.1038/s41598-019-55518-8

  82. Wei, B., Li, H.G., Cao, H.T., Wen, F.: Optimum design of reactive sputtering parameters on the mechanical property of C-doped TiO2 photocatalytic films: CO2 as carbon source. Key Eng Mater. 807, 41–49 (2019). https://doi.org/10.4028/www.scientific.net/KEM.807.41

    Article  Google Scholar 

  83. Tang, W., Hu, C.-C., Tsao, C.-C., Chen, C.-S., Roselin, L.S., Kuo, C.-G., Hsu, C.-Y.: Photocatalytic activity and mechanical performance of O and N Co-doped TiO2 thin films. J Electron Mater. 51, 6145–6159 (2022). https://doi.org/10.1007/s11664-022-09843-w

    Article  CAS  Google Scholar 

  84. Samsudin, E.M., Abd Hamid, S.B., Juan, J.C., Basirun, W.J., Centi, G.: Synergetic effects in novel hydrogenated F-doped TiO 2 photocatalysts. Appl Surf Sci. 370, 380–393 (2016). https://doi.org/10.1016/j.apsusc.2016.02.172

    Article  CAS  Google Scholar 

  85. Wang, P., Qi, C., Wen, P., Hao, L., Xu, X., Agathopoulos, S.: Synthesis of Si, N Co-doped nano-sized Tio2 with high thermal stability and photocatalytic activity by mechanochemical method. Nanomaterials. 8, (2018). https://doi.org/10.3390/nano8050294

  86. Yadav, P., Dwivedi, P.K., Tonda, S., Boukherroub, R., Shelke, M.V.: Metal and non-metal doped metal oxides and sulfides. In: Naushad, M., Rajendran, S., Lichtfouse, E. (eds.) Green Photocatalysts. Environmental Chemistry for a Sustainable World, vol 34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-15608-4_4

  87. Khairy, M., Zakaria, W.: Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes. Egypt J Pet. 23, 419–426 (2014). https://doi.org/10.1016/j.ejpe.2014.09.010

    Article  Google Scholar 

  88. Li, J., Shi, J., Li, Y., Ding, Z., Huang, J.: A biotemplate synthesized hierarchical Sn-doped TiO2 with superior photocatalytic capacity under simulated solar light. Ceram Int. (2020). https://doi.org/10.1016/j.ceramint.2020.11.181

  89. Zhao, J., Wang, B., Lu, K.: Influence of Ta2O5 doping and microwave sintering on TiO2-based varistor properties. Ceram Int. 40, 14229–14234 (2014). https://doi.org/10.1016/j.ceramint.2014.06.012

    Article  CAS  Google Scholar 

  90. Yu, J.H., Nam, S.H., Lee, J.W., Kim, D.I., Boo, J.H.: Oxidation state and structural studies of vanadium-doped titania particles for the visible light-driven photocatalytic activity. Appl Surf Sci. 472, 46–53 (2019). https://doi.org/10.1016/j.apsusc.2018.04.125

    Article  CAS  Google Scholar 

  91. Nguyen, T.B., Hwang, M.J., Ryu, K.S.: High adsorption capacity of V-doped TiO 2 for decolorization of methylene blue. Appl Surf Sci. 258, 7299–7305 (2012). https://doi.org/10.1016/j.apsusc.2012.03.148

    Article  CAS  Google Scholar 

  92. Avansi, W., Arenal, R., De Mendonça, V.R., Ribeiro, C., Longo, E.: Vanadium-doped TiO2 anatase nanostructures: the role of v in solid solution formation and its effect on the optical properties. CrystEngComm. 16, 5021–5027 (2014). https://doi.org/10.1039/c3ce42356e

    Article  CAS  Google Scholar 

  93. Shah, S.I., Li, W., Huang, C.-P., Jung, O., Ni, C.: Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles. PNAS 99(Suppl. 2), 6482–6486 (2002). https://doi.org/10.1073/pnas.052518299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kerkez-Kuyumcu, Ö., Kibar, E., Dayioʇlu, K., Gedik, F., Akin, A.N., Özkara Aydinoǧlu, S.: A comparative study for removal of different dyes over M/TiO2(M = Cu, Ni, Co, Fe, Mn and Cr) photocatalysts under visible light irradiation. J Photochem Photobiol A Chem. 311, 176–185 (2015). https://doi.org/10.1016/j.jphotochem.2015.05.037

    Article  CAS  Google Scholar 

  95. Lv, C., Lan, X., Wang, L., Yu, Q., Zhang, M., Sun, H., Shi, J.: Alkaline-earth-metal-doped TiO2 for enhanced photodegradation and H2 evolution: insights into the mechanisms. Catal Sci Technol. 9, 6124–6135 (2019). https://doi.org/10.1039/c9cy01687b

    Article  CAS  Google Scholar 

  96. Mogal, S.I., Mishra, M., Gandhi, V.G., Tayade, R.J.: Metal doped titanium dioxide: synthesis and effect of metal ions on physico-chemical and photocatalytic properties. Mater Sci Forum. 734, 364–378 (2013). https://doi.org/10.4028/www.scientific.net/MSF.734.364

    Article  CAS  Google Scholar 

  97. Jin-Feng, W., Hong-Cun, C., Xing-Hua, Z., De-Jun, Z., Wei-Lie, Z.: Nonlinear electrical behaviour of the TiO 2 ·Sb 2 O 3 system. Chin Phys Lett. 17, 530–531 (2000). https://doi.org/10.1088/0256-307x/17/7/024

    Article  Google Scholar 

  98. Wang, W.Y., Zhang, D.F., Xu, T., Xu, Y.P., Zhou, T., Hu, B.Q., Wang, C.Y., Wu, L.S., Chen, X.L.: Nonlinear electrical characteristics and dielectric properties of Ca,Ta-doped TiO2 varistors. Appl Phys A. 76, 71–75 (2003). https://doi.org/10.1007/s003390201303

    Article  CAS  Google Scholar 

  99. Su, W.-B., Wang, J.-F., Chen, H.-C., Wang, W.-X., Zang, G.-Z., Li, C.-P.: Novel TiO2·WO3 varistor system. Mater Sci Eng B. 99, 461–464 (2003). https://doi.org/10.1016/S0921-5107(02)00473-7

    Article  CAS  Google Scholar 

  100. Navale, S.C., Murugan, A.V., Ravi, V.: Varistors based on Ta-doped TiO 2. Ceram Int. 33, 301–303 (2007). https://doi.org/10.1016/j.ceramint.2005.07.026

    Article  CAS  Google Scholar 

  101. Wang, T., Qin, Q., Zhou, D.: Effect of Er2O3 on the microstructure and electrical properties of (Er, Ta)-doped TiO2 capacitor-varistor ceramics. Adv Mater Res. 216, 563–567 (2011). https://doi.org/10.4028/www.scientific.net/AMR.216.563

    Article  CAS  Google Scholar 

  102. Lan, D.J., Wan, S.Q.: Investigation of low temperature sintering of low voltage varistor based on TiO2. Adv Mater Res. 852, 12–16 (2014). https://doi.org/10.4028/www.scientific.net/AMR.852.12

    Article  CAS  Google Scholar 

  103. Gong, Y., Chu, R., Xu, Z., Sun, J., Chao, F., Ma, S., Hao, J., Li, H., Li, G.: Electrical properties of Ta2O5-doped TiO2 varistor ceramics sintered at low-temperature. Ceram Int. 41, 9183–9187 (2015). https://doi.org/10.1016/j.ceramint.2015.03.082

    Article  CAS  Google Scholar 

  104. Peng, F., Zhu, D.: Effect of sintering temperature and Ho2O3 on the properties of TiO2-based varistors. Ceram Int. 44, 21034–21039 (2018). https://doi.org/10.1016/j.ceramint.2018.08.139

    Article  CAS  Google Scholar 

  105. Lim, J.W., Yun, S.J., Kim, H.T.: Characteristics of TiSiO films for varistors. ECS Trans. 16, 337–341 (2008)

    Article  CAS  Google Scholar 

  106. Ziaja, J., Lewandowski, M.: Thin-film TiPbO3 varistors obtained by two-source magnetron sputtering. In: IOP Conference Series: Materials Science and Engineering, vol. 113, (2016). https://doi.org/10.1088/1757-899X/113/1/012007

    Chapter  Google Scholar 

  107. Lu, L., Xia, X., Luo, J.K., Shao, G.: Mn-doped TiO 2 thin films with significantly improved optical and electrical properties. J Phys D Appl Phys. 45, (2012). https://doi.org/10.1088/0022-3727/45/48/485102

  108. Mantas, P.Q., Baptista, J.L.: The barrier height formation in ZnO varistors. J Eur Ceram Soc. 15, 605–615 (1995). https://doi.org/10.1016/0955-2219(95)00025-P

    Article  CAS  Google Scholar 

  109. Hirose, S., Nishita, K., Niimi, H.: Influence of distribution of additives on electrical potential barrier at grain boundaries in ZnO-based multilayered chip varistor. J Appl Phys. 100, 83706 (2006). https://doi.org/10.1063/1.2358833

    Article  CAS  Google Scholar 

  110. Firdaus, C.M., Rizam, M.S., Rusop, M., Hidayah, S.: Characterization of ZnO and ZnO: TiO2 thin films prepared by sol-gel spray-spin coating technique. Procedia Eng. 41, 1367–1373 (2012). https://doi.org/10.1016/j.proeng.2012.07.323

    Article  CAS  Google Scholar 

  111. González-Verjan, V.A., Trujillo-Navarrete, B., Félix-Navarro, R.M., de León, J.N.D., Romo-Herrera, J.M., Calva-Yáñez, J.C., Hernández-Lizalde, J.M., Reynoso-Soto, E.A.: Effect of TiO2 particle and pore size on DSSC efficiency. Mater Renew Sustain Energy. 9, (2020). https://doi.org/10.1007/s40243-020-00173-7

  112. Lu, W., Wong, L.M., Wang, S., Zeng, K.: Effects of oxygen and moisture on the I-V characteristics of TiO2 thin films. J Mater. 4, 228–237 (2018). https://doi.org/10.1016/j.jmat.2018.01.005

    Article  Google Scholar 

  113. He, J., Cheng, C., Hu, J.: Electrical degradation of double-Schottky barrier in ZnO varistors. AIP Adv. 6, 30701 (2016). https://doi.org/10.1063/1.4944485

    Article  CAS  Google Scholar 

  114. Meshkatoddini, M.R.: Metal oxide ZnO-based varistor ceramics. (2011). https://doi.org/10.5772/23601

  115. Xia, J., Ni, X.: Preparation, characteristic and effect of annealing temperature of low voltage ZnO film varistor. In: Proceedings of the 2008 2nd IEEE International Nanoelectronics Conference, pp. 891–893 (2008)

    Google Scholar 

  116. Takada, M., Yoshikado, S.: Effect of thermal annealing on electrical degradation characteristics of Sb-Bi-Mn-Co-Added ZnO varistors. J Eur Ceram Soc. 30, 531–538 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.06.006

    Article  CAS  Google Scholar 

  117. Nahm, C.-W.: The Effect of sintering temperature on varistor properties of (Pr, Co, Cr, Y, Al)-doped ZnO ceramics. Mater Lett. 62, 4440–4442 (2008). https://doi.org/10.1016/j.matlet.2008.07.042

    Article  CAS  Google Scholar 

  118. Kumaravel, V., Rhatigan, S., Mathew, S., Bartlett, J., Nolan, M., Hinder, S.J., Sharma, P.K., Singh, A., Byrne, J.A., Harrison, J., et al.: Indium-doped TiO2 photocatalysts with high-temperature anatase stability. J Phys Chem C. 123, 21083–21096 (2019). https://doi.org/10.1021/acs.jpcc.9b06811

    Article  CAS  Google Scholar 

  119. Lourduraj, S., Williams, R.V.: Effect of iron doping on structural and optical properties of TiO2 thin film by sol–gel routed spin coating technique. J Adv Dielectr. 7, 2–6 (2017). https://doi.org/10.1142/S2010135X17500242

    Article  CAS  Google Scholar 

  120. Budhe, S., Ghumatkar, A., Birajdar, N., Banea, M.D.: Effect of surface roughness using different adherend materials on the adhesive bond strength. Appl Adhes Sci. 3, 0–9 (2015). https://doi.org/10.1186/s40563-015-0050-4

    Article  CAS  Google Scholar 

  121. Yang, G., Jiang, Z., Shi, H., Xiao, T., Yan, Z.: Preparation of highly visible-light active N-doped TiO2 photocatalyst. J Mater Chem. 20, 5301–5309 (2010). https://doi.org/10.1039/C0JM00376J

    Article  CAS  Google Scholar 

  122. Tio, C.C.M., Light, V., Shi, Z., Lai, H., Yao, S., Wang, S.: And Visible Light. (2011). https://doi.org/10.1002/jccs.201100509

  123. Avilés-García, O., Espino-Valencia, J., Romero-Romero, R., Rico-Cerda, J.L., Arroyo-Albiter, M., Solís-Casados, D.A., Natividad-Rangel, R.: Enhanced photocatalytic activity of titania by co-doping with Mo and W. Catalysts. 8, (2018). https://doi.org/10.3390/catal8120631

  124. Pradeev, K.; Sadaiyandi, K.; Kennedy, A.; Sagadevan, S.; Chowdhury, Z.Z.; Rafie, M.; Johan, B.; Aziz, F.A.; Rafique, R.F.; Selvi, R.T.; et al. Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. 2018.

    Book  Google Scholar 

  125. El Mragui, A., Logvina, Y., da Silva, L.P., Zegaoui, O., da Silva, J.C.G.E.: Synthesis of Fe-and Co-doped TiO2 with improved photocatalytic activity under visible irradiation toward carbamazepine degradation. Materials. 12, 4–6 (2019). https://doi.org/10.3390/MA12233874

    Article  Google Scholar 

  126. Youssef, A.M., Yakout, S.M.: Colossal permittivity, electrical conductivity and ferromagnetic properties of pure TiO 2 : mono and binary doping. Materialia. 21, 101277 (2022). https://doi.org/10.1016/j.mtla.2021.101277

    Article  CAS  Google Scholar 

  127. Jaiswal, R., Bharambe, J., Patel, N., Dashora, A., Kothari, D.C., Miotello, A.: Applied catalysis B : environmental copper and nitrogen co-doped TiO 2 photocatalyst with enhanced optical absorption and catalytic activity. Appl Catal B. 168–169, 333–341 (2015). https://doi.org/10.1016/j.apcatb.2014.12.053

    Article  CAS  Google Scholar 

  128. Suriyachai, N., Chuangchote, S., Laosiripojana, N., Champreda, V., Sagawa, T.: Synergistic effects of co-doping on photocatalytic activity of titanium dioxide on glucose conversion to value-added chemicals. ACS Omega. 5, 20373–20381 (2020). https://doi.org/10.1021/acsomega.0c02334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Asahi, R., Morikawa, T., Irie, H., Ohwaki, T.: Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev. 114, 9824–9852 (2014). https://doi.org/10.1021/cr5000738

    Article  CAS  PubMed  Google Scholar 

  130. Yu, C., Yang, K., Shu, Q., Yu, J.C., Cao, F., Li, X., Zhou, X.: Preparation, characterization and photocatalytic performance of Mo-doped ZnO photocatalysts. Sci China Chem. 55, 1802–1810 (2012). https://doi.org/10.1007/s11426-012-4721-8

    Article  CAS  Google Scholar 

  131. Lin, X., Fu, D.: Facile one-pot hydrothermal synthesis of B/N-codoped TiO2 hollow spheres with enhanced visible-light photocatalytic activity and photoelectrochemical property. Solid State Sci. (2014). https://doi.org/10.1016/j.solidstatesciences.2014.05.007

  132. Fu, C., Gong, Y., Wu, Y., Liu, J., Zhang, Z., Li, C., Niu, L.: Photocatalytic enhancement of TiO 2 by B and Zr co-doping and modulation of microstructure. Appl Surf Sci. (2016). https://doi.org/10.1016/j.apsusc.2016.03.192

  133. Sendi, R.K.: Electric and dielectric behaviors of (Ca, Ta)-doped TiO2 thick film varistor obtained by screen printing. Results Phys. 8, 758–763 (2018). https://doi.org/10.1016/j.rinp.2018.01.012

    Article  Google Scholar 

  134. Sousa, V.C., Leite, E.R., Varela, J.A., Longo, E.: The effect of Ta2O5 and Cr2O3 on the electrical properties of TiO2 varistors. J Eur Ceram Soc. 22, 1277–1283 (2002). https://doi.org/10.1016/S0955-2219(01)00441-1

    Article  CAS  Google Scholar 

  135. Wang, T.G., Qin, Q., Zhang, W.J.: Effect of temperature on microstructure and electrical properties of (Y, Ta)-doped TiO2 capacitor-varistor ceramics. Adv Mater Res. 214, 173–177 (2011). https://doi.org/10.4028/www.scientific.net/AMR.214.173

    Article  CAS  Google Scholar 

  136. Kothandapani, Z., Begum, S., Nainar, M.A.M., Gholizadeh, S., Yee, W.M.: Physical characterization of titanium dioxide based varistor materials doped with cobalt oxide. In: Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium, pp. 0–3 (2012). https://doi.org/10.1109/IEMT.2012.6521809

    Chapter  Google Scholar 

  137. Delbrücke, T., Schmidt, I., Cava, S., Sousa, V.C.: Electrical properties of a TiO2-SrO varistor system. Adv Mater Res. 975, 168–172 (2014). https://doi.org/10.4028/www.scientific.net/AMR.975.168

    Article  CAS  Google Scholar 

  138. Kang, K., Zhang, J., Yan, J., Du, J., Yi, J., Liu, Y., Bao, R., Tan, S., Gan, G.: (Ge, GeO2, Ta2O5, BaCO3) Co-doping TiO2 varistor ceramics. J Alloys Compd. 649, (2015). https://doi.org/10.1016/j.jallcom.2015.05.112

  139. Kang, K., Yan, J., Yi, J., Li, Z., Ge, Q., Yan, F., Yang, J., Zhao, C., Gan, G.: Nonlinear property of (Nb 2 O 5 , SrCO 3 , Ge, GeO 2 )-codoped TiO 2 -based varistor ceramics. J Am Ceram Soc. 99, n/a-n/a, (2015). https://doi.org/10.1111/jace.13921

  140. Jiang, G.M., Yan, J.K., Yang, G., Duan, Z.C., Kang, K.Y., Du, J.H., Gan, G.Y., Yi, J.H.: Performance of (Y2O3,V2O5) co-doping TiO2 ceramics. Key Eng Mater. 697, 271–274 (2016). https://doi.org/10.4028/www.scientific.net/KEM.697.271

    Article  Google Scholar 

  141. Liao, X., Pu, Y., Zhu, D.: Synergistic effect of co-doping of nano-sized ZnO and Nb2O5 on the enhanced nonlinear coefficient of TiO2 varistor with low breakdown Voltage. J Alloys Compd. 886, 161170 (2021). https://doi.org/10.1016/j.jallcom.2021.161170

    Article  CAS  Google Scholar 

  142. Wu, D., Mao, F., Yang, Z., Wang, S., Zhou, Z.: Silicon and aluminum co-doping of titania nanoparticles: effect on thermal stability, particle size and photocatalytic activity. Mater Sci Semicond Process. 23, 72–77 (2014). https://doi.org/10.1016/j.mssp.2014.02.040

    Article  CAS  Google Scholar 

  143. Tuichai, W., Danwittayakul, S., Manyam, J., Chanlek, N., Takesada, M., Thongbai, P.: Giant dielectric properties of Ga3+–Nb5+co-doped TiO2 ceramics driven by the internal barrier layer capacitor effect. Materialia. 18, 101175 (2021). https://doi.org/10.1016/j.mtla.2021.101175

    Article  CAS  Google Scholar 

  144. Joanne, T.N., Neil., M. Use of coated substrates 2022.

    Google Scholar 

  145. Ahmad, M.K.B.I.N.; Nayan, N.B.I.N.; Kenji, M. Nanostructures dye-sensitized solar cell 2019.

    Google Scholar 

  146. Angang, S.; Di, Z.H.U.; Baofeng, Z.; Haibin, G.; Dan, X.U.; Shuyuan, W.; Xiangyu, F. Titanium dioxide semiconductor film, preparation method and application of titanium dioxide semiconductor film in photoelectrocatalysis 2021.

    Google Scholar 

  147. Zhongshan Kelite Optoelectronotics Tech Co Ltd Semiconductor composite titanium dioxide water photolysis hydrogen production device 2020.

    Google Scholar 

Download references

Acknowledgements

Acknowledgement is expressed to the resources and facilities provided by Universiti Malaya RU Grant (Project No: ST042-2021) for the completion of this review article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. R. Bushroa or M. Rizwan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukrey, N.A., Bushroa, A.R. & Rizwan, M. Dopant incorporation into TiO2 semiconductor materials for optical, electronic, and physical property enhancement: doping strategy and trend analysis. J Aust Ceram Soc 60, 563–589 (2024). https://doi.org/10.1007/s41779-023-00958-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00958-9

Keywords

Navigation