Skip to main content

Advertisement

Log in

A review of various ceramic pigment preparation and characterization methodologies for applications

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Nowadays, ceramic pigment has been utilized for attractively decorating ceramic things. In addition, diverse mechanical and chemical processes function with diverse temperatures to prepare the ceramic colorant. Also, the ceramic material’s crystalline behavior is validated under molten glass’ high thermal and chemical resistance stability range. Although, based on the firing temperature, chemical compositions, crystalline substance, distinct atmosphere, and milling method (fabrication), the pigments’ stability varies. Thus, the preparation of ceramic pigment is more important and needed to meet the increasing demand for ceramic commodities. Ceramic pigments like cadmium, titanium dioxide, and nickel-hydroxycarbonate are widely utilized in board palette designing applications with different colors; this has been utilized to design attractive ceramic materials. So, the current review article has presented the preparation procedure of ceramic pigments using different techniques. Moreover, the pigments are changed in ceramic materials based on different doping materials and preparation methods. Thus, some approaches need more powder weight (wt) to gain the expected colorant, and some other techniques require less quantity of pigment powder. Finally, the metrics of ceramic pigment synthesis were evaluated based on different preparation schemes and future directions provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Kavaz, E., Oto, B., Durak, H., Madak, Z.: Improving the performance of nuclear protection of Al2Si2O5(OH)4–KAlSi3O8–SiO2 ceramics with cobalt insertion: an experimental study. J. Aust. Ceram. Soc. 56, 1595–1607 (2020). https://doi.org/10.1007/s41779-020-00503-y

    Article  CAS  Google Scholar 

  2. Rajabi, M., Kharaziyan, P., Montazeri-Pour, M.: Microwave-assisted processing of cobalt aluminate blue nano-ceramic pigment using sol–gel method. J. Aust. Ceram. Soc. 55, 219–227 (2019). https://doi.org/10.1007/s41779-018-0226-z

    Article  CAS  Google Scholar 

  3. Wu, W., Han, Y., Huang, X., Du, J., Bai, W., Wen, F., Wu, W., Zheng, P., Zheng, L., Zhang, Y.: Electrical properties of a Cr2O3-modified Na0.5Bi4.5Ti4O15-Na0.5Bi0.5TiO3 composite ceramic. J. Aust. Ceram. Soc. 57, 321–326 (2021). https://doi.org/10.1007/s41779-020-00534-5

    Article  CAS  Google Scholar 

  4. Li, B., Xia, Q., Wang, Z.: Effect of MnO on the crystallization, microstructure, and properties of MgO-Al2O3-SiO2 glass-ceramics. J. Aust. Ceram. Soc. (2021). https://doi.org/10.1007/s41779-021-00588-z

  5. Li, J., Liu, H., Zhang, Y., Li, Y., Qi, D., Chen, Z.: Facile fabrication of Fe-doped Si–C–N ceramic microspheres with flower-like morphology and the infrared extinction property. J. Sol-Gel Sci. Technol. 1–7 (2020). https://doi.org/10.1007/s10971-020-05250-x

  6. Li, Z., Du, Y., Chen, Z., Sun, D., Zhu, C.: Synthesis and characterization of cobalt doped green ceramic pigment from tannery sludge. Ceram. Int. 41(10), 12693–12699 (2015). https://doi.org/10.1016/j.ceramint.2015.06.101

    Article  CAS  Google Scholar 

  7. Akinay, Y., Akkuş, I.N.: Synthesis and characterization of the pearlescent pigments based on mica deposited with SiO2, AlN and TiO2: first report of its dielectric properties. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.04.078

  8. Guo, R., Wang, Q., Bao, J., Song, X.: Preparation and properties of Co-doped magnesium lanthanum hexaluminat blue ceramics. Ceramics. 3(2), 235–244 (2020). https://doi.org/10.3390/ceramics3020021

    Article  CAS  Google Scholar 

  9. Rui, G., Wang, Q., Bao, J., Song, X., Wang, J.: Preparation and properties of calcium hexaluminate blue ceramics. J. Mater. Sci. Mater. Electron. 1–10 (2020). https://doi.org/10.1007/s10854-020-03726-8

  10. Lv, H., Bao, J., Ruan, F., Zhou, F., Wang, Q., Zhang, W.: Preparation and properties of black Ti-doped zirconia ceramics. J. Mater. Res. Technol. (2020). https://doi.org/10.1016/j.jmrt.2020.01.021

  11. Rostampour, M., Eavani, S.: Synthesis and characterization of the novel nano composite pigments using CoWO4 on different silica sources: a comparative study. Powder Technol. 363, 86–94 (2020). https://doi.org/10.1016/j.powtec.2020.01.031

    Article  CAS  Google Scholar 

  12. Zou, J., Zhang, P.: Ni-doped BaTi5O11: New brilliant yellow pigment with high NIR reflectance as solar reflective fillers. Ceram. Int. 46(3), 3490–3497 (2020). https://doi.org/10.1016/j.ceramint.2019.10.063

    Article  CAS  Google Scholar 

  13. Sobiecka, E., Kołaciński, Z., Rincón, J.M., Olejnik, T.P.: Coloured sintered glass-ceramics from hospital incineration fly ash. Mater. Lett. 252, 35–37 (2019). https://doi.org/10.1016/j.matlet.2019.05.047

    Article  CAS  Google Scholar 

  14. Cerro, S., Llusar, M., Gargori, C., Monrós, G.: Cool and photocatalytic yellow ceramic pigments; from lead-tin to Cr doped scheelite pigments. Ceram. Int. 45(4), 4613–4625 (2019). https://doi.org/10.1016/j.ceramint.2018.11.150

    Article  CAS  Google Scholar 

  15. Shalvi, G., Shoval, S., Bar, S., Gilboa, A.: Pigments on Late Bronze Age painted Canaanite pottery at Tel Esur: new insights into Canaanite–Cypriot technological interaction. J. Archaeol. Sci. Rep. 30, 102212 (2020). https://doi.org/10.1016/j.jasrep.2020.102212

    Article  Google Scholar 

  16. Zhang, T., Huang, J., Yan, J., Pu, Z., Yin, X., Wang, Y.: The structural evolution and optical properties of Mg1-xZnxAl1. 8Cr0. 2O4 pink ceramic pigments. Ceram. Int. 45(14), 16848–16854 (2019). https://doi.org/10.1016/j.ceramint.2019.05.227

    Article  CAS  Google Scholar 

  17. Yan, J., Huang, J., Zhang, T., Tian, H., Yu, J., Zhang, L.: Investigation of the microstructure, cation distribution and optical properties of nanoscale NixMg1-xAl2O4 spinel pigments. Ceram. Int. 45(11), 14073–14083 (2019). https://doi.org/10.1016/j.ceramint.2019.04.106

    Article  CAS  Google Scholar 

  18. Turner, A.: Cadmium pigments in consumer products and their health risks. Sci. Total Environ. 657, 1409–1418 (2019). https://doi.org/10.1016/j.scitotenv.2018.12.096

    Article  CAS  Google Scholar 

  19. Llusar, M., Bermejo, T., Primo, J.E., Gargori, C., Esteve, V.: Karrooite green pigments doped with Co and Zn: Synthesis, color properties and stability in ceramic glazes. Ceram. Int. 43(12), 9133–9144 (2017). https://doi.org/10.1016/j.ceramint.2017.04.062

    Article  CAS  Google Scholar 

  20. Ashkenazi, D., Dvir, O., Kravits, H., Klein, S., Cvikel, D.: Decorated floor tiles from the 19th-century Akko Tower shipwreck (Israel): analysis of pigments and glaze. Dyes Pigm. 147, 160–174 (2017). https://doi.org/10.1016/j.dyepig.2017.08.005

    Article  CAS  Google Scholar 

  21. Habashi, F.: Pigments through the ages. InterCeram: Int. Ceram. Rev. 65(4-5), 156–165 (2016). https://doi.org/10.1007/BF03401164

    Article  CAS  Google Scholar 

  22. Lv, J., Tang, M., Quan, R., Chai, Z.: Synthesis of solar heat-reflective ZnTiO3 pigments with novel roof cooling effect. Ceram. Int. 45(12), 15768–15771 (2019). https://doi.org/10.1016/j.ceramint.2019.05.081

    Article  CAS  Google Scholar 

  23. Rodrigues, F.T.E., Göttert, D., Pereira, L.J.: Production of brown inorganic pigments with spinel structure using spent zinc-carbon batteries. Process. Appl. Ceram. 12(4), 319–325 (2018). https://doi.org/10.2298/PAC1804319R

    Article  Google Scholar 

  24. de Sousa Santos, T.C., do Rosario Pinheiro, D.: Synthesis and characterization of pigments based on copper-zinc aluminate (CuxZn1-xAl2O4) by combustion. Ceram. Int. 46(2), 2332–2343 (2020). https://doi.org/10.1016/j.ceramint.2019.09.224

    Article  CAS  Google Scholar 

  25. Feng, Q., Li, X., Yang, J.: Two-dimensional multifunctional metal–organic framework with intrinsic bipolar magnetic semiconductivity and negative Poisson’s ratio. ACS Appl. Electron. Mater. 4(7), 3198–3204 (2022). https://doi.org/10.1021/acsaelm.2c00366

    Article  CAS  Google Scholar 

  26. Khan, M.I., Hossain, M.I., Hossain, M.K., Rubel, M.H.K., Hossain, K.M., Mahfuz, A.M.U.B., Anik, M.I.: Recent progress in nanostructured smart drug delivery systems for cancer therapy: a review. ACS Appl. Bio Mater. 5(3), 971–1012 (2022). https://doi.org/10.1021/acsabm.2c00002

    Article  CAS  Google Scholar 

  27. Aydin, A., Demirtas, Z., Ok, M., Erkus, H., Cebi, G., Uysal, E., Gunduz, O., Ustundag, C.B.: 3D printing in the battle against COVID-19. Emergent. Mater. 4, 363–386 (2021). https://doi.org/10.1007/s42247-021-00164-y

    Article  CAS  Google Scholar 

  28. Hossain, K.M., et al.: Hydrothermal synthesis and crystal structure of a novel bismuth oxide:(K0. 2Sr0. 8)(Na0. 01Ca0. 25Bi0. 74) O3. ACS omega. 6(24), 15975–15980 (2021)

    Article  CAS  Google Scholar 

  29. Hossain, K.M., Saiduzzaman, M., Kumada, N., Takei, T., Yamane, H., Rubel, M.H.K.: Ca x Ba1–x Nb2O6 ferroelectric nanopowders for ultrahigh-density optical data storage. ACS Omega. 1(11), 6289–6300 (2018)

    Google Scholar 

  30. Saiduzzaman, M., Yoshida, H., Takei, T., Yanagida, S., Kumada, N., Nagao, M., et al.: Hydrothermal synthesis and crystal structure of a (Ba0.54 K0.46)4Bi4O12 double-perovskite superconductor with onset of the transition Tc ∼ 30 K. Inorg. Chem. 6(24), 15975–15980 (2021). https://doi.org/10.1021/acsomega.1c01694

    Article  CAS  Google Scholar 

  31. Rubel, M.H.K., Hossain, M.E., Parvez, M.S., Rahaman, M.M., Islam, M.S., Kumada, N., Kojima, S.: Low-temperature synthesis of potassium triniobate (KNb3O8) ceramic powder by a novel aqueous organic gel route. J. Aust. Ceram. Soc. 55, 759–764 (2019). https://doi.org/10.1007/s41779-018-0287-z

    Article  CAS  Google Scholar 

  32. Rube, M.H.K., Takei, T., Kumada, N., Ali, M.M., Miura, A., Tadanaga, K., et al.: Hydrothermal synthesis, structure, and superconductivity of simple cubic perovskite (Ba0.62 K0.38)(Bi0.92 Mg0.08)O3 with Tc ∼ 30 K. Inorg. Chem. 56(6), 3174–3181 (2017). https://doi.org/10.1021/acs.inorgchem.6b01853

    Article  CAS  Google Scholar 

  33. Rubel, M.H.K., Takei, T., Kumada, N., Ali, M.M., Miura, A., Tadanaga, K., Oka, K., et al.: Hydrothermal synthesis, crystal structure, and superconductivity of a double-perovskite bi oxide. Chem. Mater. 28(2), 459–465 (2016). https://doi.org/10.1021/acs.chemmater.5b02386

    Article  CAS  Google Scholar 

  34. Rubel, M.H.K., Takei, T., Kumada, N., Ali, M.M., Miura, A., Tadanaga, K., Oka, K., Azuma, M., Magomae, E., Moriyoshi, C., Kuroiwa, Y.: Hydrothermal synthesis of a new Bi-based (Ba0.82 K0.18)(Bi0.53Pb0.47)O3 superconductor. J. Alloys Compd. 634, 208–214 (2015). https://doi.org/10.1016/j.jallcom.2014.12.274

    Article  CAS  Google Scholar 

  35. Rubel, M.H.K., Miura, A., Takei, T., Kumada, N., Ali, M.M., Nagao, M., et al.: Superconducting double perovskite bismuth oxide prepared by a low-temperature hydrothermal reaction. Angewandte Chemie. 126(4), 3673–3677 (2014). https://doi.org/10.1002/ange.201400607

    Article  Google Scholar 

  36. Puente, V., Desimone, P.M., Tomba, J.P.: Compositional variability of pigments of Belén-style prehispanic ceramics from El Bolsón Valley, Catamarca Province. Argentina. J. Archaeol. Sci. Rep. 12, 553–560 (2017). https://doi.org/10.1016/j.jasrep.2017.03.007

    Article  Google Scholar 

  37. Aruna, S.T., Ghosh, S., Patil, K.C.: Combustion synthesis and properties of Ce1− xPrxO2− δ red ceramic pigments. Int. J. Inorg. Mater. 3(4-5), 387–392 (2001). https://doi.org/10.1016/S1466-6049(01)00020-4

    Article  CAS  Google Scholar 

  38. Ianoş, R., Lazău, R., Barvinschi, P.: Synthesis of Mg1− xCoxAl2O4 blue pigments via combustion route. Adv. Powder Technol. 22(3), 396–400 (2011). https://doi.org/10.1016/j.apt.2010.06.006

    Article  CAS  Google Scholar 

  39. Salem, S., Jazayeri, S.H., Bondioli, F., Allahverdi, A., Shirvani, M., Ferrari, A.M.: CoAl2O4 nano pigment obtained by combustion synthesis. Int. J. Appl. Ceram. Technol. 9(5), 968–978 (2012). https://doi.org/10.1111/j.1744-7402.2011.02704.x

    Article  CAS  Google Scholar 

  40. Chavarriaga, E., Lopera, A., Bergmann, C., Alarcon, J.: Effect of the substitution of Co2+ by Mg2+ on the color of the CoCr2O4 ceramic pigment synthesized by solution combustion. Boletín. de la Sociedad. Española. de Cerámica. y Vidrio. 59(4), 176–184 (2020). https://doi.org/10.1016/j.bsecv.2019.11.001

    Article  CAS  Google Scholar 

  41. Jahanbakhshi, M.: Mesoporous carbon foam, synthesized via modified Pechini method, in a new dispersant of Salep as a novel substrate for electroanalytical determination of epinephrine in the presence of uric acid. Mater. Sci. Eng. C. 70, 544–551 (2017). https://doi.org/10.1016/j.msec.2016.09.013

    Article  CAS  Google Scholar 

  42. Gomes, Y.F., Li, J., Silva, K.F., Santiago, A.A.G., Bomio, M.R.D., Paskocimas, C.A., Subramanian, M.A., Motta, F.V.: Synthesis and characterization of Y (In, Mn) O3 blue pigment using the complex polymerization method (CPM). Ceram. Int. 44(11), 11932–11939 (2018). https://doi.org/10.1016/j.ceramint.2018.04.152

    Article  CAS  Google Scholar 

  43. Wang, Q., Chang, Q., Wang, Y., Wang, X., Zhou, J.: Ultrafine CoAl2O4 ceramic pigment prepared by Pechini-sacrificial agent method. Mater. Lett. 173, 64–67 (2016). https://doi.org/10.1016/j.matlet.2016.03.014

    Article  CAS  Google Scholar 

  44. Asafa, T.B., Adedokun, O., Dele-Afolabi, T.T.: Characterization techniques in nanotechnology: the state of the art. Microbial Nanobiotechnology. Principles and Applications. 21, (2021)

  45. Salvati, E., Korsunsky, A.M.: Micro-scale measurement & FEM modelling of residual stresses in AA6082-T6 Al alloy generated by wire EDM cutting. J. Mater. Process. Technol. 275, 116373 (2020). https://doi.org/10.1016/j.jmatprotec.2019.116373

    Article  CAS  Google Scholar 

  46. Han, M., Wang, Z., Xu, Y., Wu, R., Jiao, S., Chen, Y., Feng, S.: Physical properties of MgAl2O4, CoAl2O4, NiAl2O4, CuAl2O4, and ZnAl2O4 spinels synthesized by a solution combustion method. Mater. Chem. Phys. 215, 251–258 (2018). https://doi.org/10.1016/j.matchemphys.2018.05.029

    Article  CAS  Google Scholar 

  47. Bae, B., Tamura, S., Imanaka, N.: Novel environment-friendly yellow pigments based on praseodymium (III) tungstate. Ceram. Int. 43(9), 7366–7368 (2017). https://doi.org/10.1016/j.ceramint.2017.02.103

    Article  CAS  Google Scholar 

  48. Gomes, Y.F.: Síntese e caracterização do pigmento azul YInMnO usando Método de Polimerizacão de Complexos (MPC). (2018). https://repositorio.ufrn.br/handle/123456789/26076

    Google Scholar 

  49. Aguilar-Elguezabal, A., Roman-Aguirre, M.: Synthesis of CoAl2O4/Al2O3 nanoparticles for ceramic blue pigments. Ceram. Int. 43(17), 15254–15257 (2017). https://doi.org/10.1016/j.ceramint.2017.08.062

    Article  CAS  Google Scholar 

  50. Li, Y., Guijarro, N., Zhang, X., Prevot, M.S., Jeanbourquin, X.A., Sivula, K., Chen, H., Li, Y.: Templating sol–gel hematite films with sacrificial copper oxide: enhancing photoanode performance with nanostructure and oxygen vacancies. ACS Appl. Mater. Interfaces. 7(31), 16999–17007 (2015). https://doi.org/10.1021/acsami.5b02111

    Article  CAS  Google Scholar 

  51. Schabbach, L.M., Bondioli, F., Ferrari, A.M., Manfredini, T., Petter, C.O., Fredel, M.C.: Color in ceramic glazes: analysis of pigment and opacifier grain size distribution effect by spectrophotometer. J. Eur. Ceram. Soc. 28(9), 1777–1781 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.01.001

    Article  CAS  Google Scholar 

  52. Saviuc-Paval, A.M., Victor Sandu, A., Marcel Popa, I.: Colorimetric and microscopic study of the thermal behavior of new ceramic pigments. Microsc. Res. Tech. 76(6), 564–571 (2013). https://doi.org/10.1002/jemt.22201

    Article  CAS  Google Scholar 

  53. Molinari, C., Conte, S., Zanelli, C., Ardit, M., Cruciani, G., Dondi, M.: Ceramic pigments and dyes beyond the inkjet revolution: from technological requirements to constraints in colorant design. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.05.302

  54. Chamyani, S., Salehirad, A., Oroujzadeh, N.: Fateh, DS: Effect of fuel type on structural and physicochemical properties of solution combustion synthesized CoCr2O4 ceramic pigment nanoparticles. Ceram. Int. 44(7), 7754–7760 (2018). https://doi.org/10.1016/j.ceramint.2018.01.205

    Article  CAS  Google Scholar 

  55. Selvaraj, M., Palraj, S., Maruthan, K., Venkatachari, G.: Physico-chemical properties of ceramic pigments for high-temperature application. Prog. Org. Coat. 62(3), 326–330 (2008). https://doi.org/10.1016/j.porgcoat.2008.01.011

    Article  CAS  Google Scholar 

  56. Rosado, L., Van Pevenage, J., Vandenabeele, P.: Multi-analytical study of ceramic pigments application in the study of Iron Age decorated pottery from SW Iberia. Measurement. 118, 262–274 (2018). https://doi.org/10.1016/j.measurement.2017.05.016

    Article  Google Scholar 

  57. Güngör, G.L., Kara, A., Gardini, D., Blosi, M., Dondi, M., Zanelli, C.: Inkjet printability of aqueous ceramic inks for digital decoration of ceramic tiles. Dyes Pigm. 127, 148–154 (2016). https://doi.org/10.1016/j.dyepig.2015.12.018

    Article  CAS  Google Scholar 

  58. Gilabert, J., Palacios, M.D., Sanz, V., Mestre, S.: Solution combustion synthesis of (Co, Ni) Cr2O4 pigments: Influence of initial solution concentration. Ceram. Int. 43(13), 10032–10040 (2017). https://doi.org/10.1016/j.ceramint.2017.05.019

    Article  CAS  Google Scholar 

  59. Luxová, J., Těšitelová, K., Podzemná, V., Šulcová, P.: Components of the Co3Cr4(PO4)6–Cr(PO3)3 system and the compound CoCr2(P2O7)2 as new ceramic pigments. Mater. Chem. Phys. 235, 121763 (2019). https://doi.org/10.1016/j.matchemphys.2019.121763

    Article  CAS  Google Scholar 

  60. Tang, Y., Wu, C., Song, Y., Zheng, Y., Zhao, K.: Effects of colouration mechanism and stability of CoAl2O4 ceramic pigments sintered on substrates. Ceram. Int. 44(1), 1019–1025 (2018). https://doi.org/10.1016/j.ceramint.2017.10.038

    Article  CAS  Google Scholar 

  61. Dondi, M., Lyubenova, T.S., Carda, J.B.: M-doped Al2TiO5 (M = Cr, Mn, Co) solid dolutions and their use as ceramic pigments. J. Am. Ceram. Soc. 92(9), 1972–1980 (2009). https://doi.org/10.1111/j.1551-2916.2009.03172.x

    Article  CAS  Google Scholar 

  62. Julián, B., Beltrán, H., Cordoncillo, E.: A study of the method of synthesis and chromatic properties of the Cr-SnO2 pigment cromium doped pigments structure have been reported under intense investigation. Eur. J. Inorg. Chem. 2002, 2694–2700 (2002). https://doi.org/10.1002/1099-0682(200210)2002:10%3C2694::AID-EJIC2694%3E3.0.CO;2-N

    Article  Google Scholar 

  63. Zhu, R., Ma, G., Cai, Y., Chen, Y., Yang, T., Duan, B., Xue, Z.: Ceramic tiles with black pigment made from stainless steel plant dust: physical properties and long-term leaching behavior of heavy metals. J. Air Waste Manag. Assoc. 66(4), 402–411 (2016). https://doi.org/10.1080/10962247.2016.1140096

    Article  CAS  Google Scholar 

  64. Dimitrov, T.I., Ibreva, T.H., Markovska, I.G.: Synthesis and investigation of ceramic pigments in the System MnO· ZnO· SiO2. Glass Ceram. 76(5-6), 216–218 (2019). https://doi.org/10.1007/s10717-019-00168-5

    Article  CAS  Google Scholar 

  65. Cavalcante, P.M.T., Dondi, M., Guarini, G., Raimondo, M., Baldi, G.: Colour performance of ceramic nano-pigments. Dyes Pigm. 80(2), 226–232 (2009). https://doi.org/10.1016/j.dyepig.2008.07.004

    Article  CAS  Google Scholar 

  66. Tena, M.A., Meseguer, S., Gargori, C., Forés, A., Badenes, J.A., Monrós, G.: Study of Cr-SnO2 ceramic pigment and of Ti/Sn ratio on formation and coloration of these materials. J. Eur. Ceram. Soc. 27(1), 215–221 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.04.183

    Article  CAS  Google Scholar 

  67. Hosseini-Zori, M., Taheri-Nassaj, E.: Nano encapsulation of hematite into silica matrix as a red inclusion ceramic pigment. J. Alloys Compd. 510(1), 83–86 (2012). https://doi.org/10.1016/j.jallcom.2011.08.086

    Article  CAS  Google Scholar 

  68. Munoz, R., Masó, N., Julián, B., Márquez, F.: Environmental study of Cr2O3–Al2O3 green ceramic pigment synthesis. J. Eur. Ceram. Soc. 24(7), 2087–2094 (2004). https://doi.org/10.1016/S0955-2219(03)00360-1

    Article  CAS  Google Scholar 

  69. Dondi, M., Zanelli, C., Ardit, M., Cruciani, G.: Ni-free, black ceramic pigments based on Co—Cr—Fe—Mnspinels: a reappraisal of crystal structure, colour and technological behaviour. Ceram. Int. 39(8), 9533–9547 (2013). https://doi.org/10.1016/j.ceramint.2013.05.072

    Article  CAS  Google Scholar 

  70. Gargori, C., Prim, S.R., Llusar, M., Folgueras, M.V., Monrós, G.: Recycling of Cr/Ni/Cu plating wastes as black ceramic pigments. Mater. Lett. 218, 341–345 (2018). https://doi.org/10.1016/j.matlet.2018.02.047

    Article  CAS  Google Scholar 

  71. Gargori, C., Cerro, S., Fas, N., Llusar, M., Monrós, G.: Red-brown ceramic pigments based on chromium doped ferrianarmalcolite, effect of mineralizers. Ceram. Int. 43(7), 5490–5497 (2017). https://doi.org/10.1016/j.ceramint.2017.01.065

    Article  CAS  Google Scholar 

  72. Ahmed, I.S., Shama, S.A., Moustafa, M.M.: Synthesis and spectral characterization of CoxMg1− xAl2O4 as new nano-coloring agent of ceramic pigment. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 74(3), 665–672 (2009). https://doi.org/10.1016/j.saa.2009.07.024

    Article  CAS  Google Scholar 

  73. Vaselnia, S.Y., Aminian, M.K., Motahari, H.: A joint experimental and theoretical study on the structural, electronic and optical properties of malayaite and chromium-doped malayaite structures as pigments. J. Phys. Chem. Solids. 141, 109402 (2020). https://doi.org/10.1016/j.jpcs.2020.109402

    Article  CAS  Google Scholar 

  74. Ahmed, I.S., Dessouki, H.A., Ali, A.A.: Synthesis and characterization of NixMg1− xAl2O4 nano ceramic pigments via a combustion route. Polyhedron. 30(4), 584–591 (2011). https://doi.org/10.1016/j.poly.2010.11.034

    Article  CAS  Google Scholar 

  75. Zhou, N., Sha, S., Zhang, Y., Li, S., Xu, S., Luan, J.: Coprecipitation synthesis of a green Co-doped wurtzite structure high near-infrared reflective pigments using ammonia as precipitant. J. Alloys Compd. 820, 153183 (2020). https://doi.org/10.1016/j.jallcom.2019.153183

    Article  CAS  Google Scholar 

  76. Halefoglu, Y.Z., Kusvuran, E.: Preparation of ceramic pigments by sol-gel and combustion methods. J. Ceram. Process. Res. 11(1), 92–95 (2010)

    Google Scholar 

  77. Chang, Q., Wang, X., Wang, Y., Bao, Q., Zhou, J., Zhu, Q.: Encapsulated carbon black prepared by sol–gel-spraying: a new black ceramic pigment. J. Eur. Ceram. Soc. 34(13), 3151–3157 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.03.020

    Article  CAS  Google Scholar 

  78. Opuchovic, O., Kareiva, A.: Historical hematite pigment: synthesis by an aqueous sol–gel method, characterization and application for the colouration of ceramic glazes. Ceram. Int. 41(3), 4504–4513 (2015). https://doi.org/10.1016/j.ceramint.2014.11.145

    Article  CAS  Google Scholar 

  79. Chen, T., Zha, J., Zhang, X., Hu, X., Jiang, W., Xie, Z., Jiang, W.: Synthesis and characterization of PrxZr1-xSiO4 (x = 0–0.08) yellow pigments via non-hydrolytic sol-gel method. J. Eur. Ceram. Soc. 38(13), 4568–4575 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.05.021

    Article  CAS  Google Scholar 

  80. Puente, V., Porto López, J.M., Desimone, P.M.: The persistence of the black colour in magnetite-based pigments in prehispanic ceramics of the Argentine North-West. Archaeometry. 61(5), 1066–1080 (2019). https://doi.org/10.1111/arcm.12476

    Article  CAS  Google Scholar 

  81. El Hadri, M., Ahamdane, H.: El Idrissi Raghni, MA: Effect of sol–gel method on colour properties of the classical cobalt olivine (Co2 SiO4) ceramic pigment. B. Mater. Sci. 40(2), 375–382 (2017). https://doi.org/10.1007/s12034-017-1378-0

    Article  CAS  Google Scholar 

  82. Tang, H., Hu, Q., Jiang, F., Jiang, W., Liu, J., Chen, T., Feng, G., Wang, T., Luo, W.: Size control of C@ZrSiO4 pigments via soft mechano-chemistry assisted non-aqueous sol-gel method and their application in ceramic glaze. Ceram. Int. 45(8), 10756–10764 (2019). https://doi.org/10.1016/j.ceramint.2019.02.149

    Article  CAS  Google Scholar 

  83. El Hadri, M., Ahamdane, H.: Raghni, MAEI: Sol gel synthesis of forsterite, M-doped forsterite (M = Ni, Co) solid solutions and their use as ceramic pigments. J. Eur. Ceram. Soc. 35(2), 765–777 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.09.024

    Article  CAS  Google Scholar 

  84. Candeia, R.A., Bernardi, M.I.B., Longo, E., Santos, I.M.G.: Synthesis and characterization of spinel pigment CaFe2O4 obtained by the polymeric precursor method. Mater. Lett. 58(5), 569–572 (2004). https://doi.org/10.1016/S0167-577X(03)00563-9

    Article  CAS  Google Scholar 

  85. Jovaní, M., Fortuño-Morte, M., Beltrán-Mir, H.: Environmental-friendly red-orange ceramic pigment based on Pr and Fe co-doped Y2Zr2O7. J. Eur. Ceram. Soc. 38(4), 2210–2217 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.12.005

    Article  CAS  Google Scholar 

  86. Cho, W.S., Kakihana, M.: Crystallization of ceramic pigment CoAl2O4 nanocrystals from Co–Al metal organic precursor. J. Alloys Compd. 287(1-2), 87–90 (1999). https://doi.org/10.1016/S0925-8388(99)00059-6

    Article  CAS  Google Scholar 

  87. Candeia, R.A., Souza, M.A.F., Bernardi, M.I.B.: Monoferrite BaFe2O4 applied as ceramic pigment. Ceram. Int. 33(4), 521–525 (2007). https://doi.org/10.1016/j.ceramint.2005.10.018

    Article  CAS  Google Scholar 

  88. de Oliveira, A.L.M., Ferreira, J.M., Silva, M.R.S., Braga, G.S., Soledade, L.E.B., Maria Aldeiza, M.A.A.: Yellow ZnxNi1 − xWO4 pigments obtained using a polymeric precursor method. Dyes Pigm. 77(1), 210–216 (2008). https://doi.org/10.1016/j.dyepig.2007.05.004

    Article  CAS  Google Scholar 

  89. Cunha, J.D., Melo, D.M.A., Martinelli, A.E., Melo, M.A.F., Maia, I., Cunha, S.D.: Ceramic pigment obtained by polymeric precursors. Dyes Pigm. 65(1), 11–14 (2005). https://doi.org/10.1016/j.dyepig.2004.06.005

    Article  CAS  Google Scholar 

  90. Lyubenova, T.S., Ocaña, M., Carda, J.: Brown ceramic pigments based on chromium (III)-doped titanite obtained by spray pyrolysis. Dyes Pigm. 79(3), 265–269 (2008). https://doi.org/10.1016/j.dyepig.2008.03.009

    Article  CAS  Google Scholar 

  91. Lopes, K.P., Cavalcante, L.S., Simões, A.Z., Varela, J.A., Longo, E., Leite, E.R.: NiTiO3 powders obtained by polymeric precursor method: synthesis and characterization. J. Alloy Compd. 468(1–2), 327–332 (2009). https://doi.org/10.1016/j.jallcom.2007.12.085

    Article  CAS  Google Scholar 

  92. Andreola, F., Barbieri, L., Bondioli, F.: Agricultural waste in the synthesis of coral ceramic pigment. Dyes Pigm. 94(2), 207–211 (2012). https://doi.org/10.1016/j.dyepig.2012.01.007

    Article  CAS  Google Scholar 

  93. Zhou, N., Zhang, Y., Nian, S., Li, W., Li, J., Cao, W.: Synthesis and characterization of Zn1-xCoxO green pigments with low content cobalt oxide. J. Alloys Compd. 711, 406–413 (2017). https://doi.org/10.1016/j.jallcom.2017.04.015

    Article  CAS  Google Scholar 

  94. Sun, Y., Yang, Q., Wang, H., Zhang, Q.: Depression of synthesis temperature and structure characterization of ZrSiO4 used in ceramic pigments. Mater. Chem. Phys. 205, 97–101 (2018). https://doi.org/10.1016/j.matchemphys.2017.11.013

    Article  CAS  Google Scholar 

  95. Zhang, S., Pan, Z., Wang, Y.: Synthesis and characterization of (Ni, Sb)-co-doped rutile ceramic pigment via mechanical activation-assisted solid-state reaction. Particuology. 41, 20–29 (2018). https://doi.org/10.1016/j.partic.2017.12.016

    Article  CAS  Google Scholar 

  96. Ke, S., Pan, Z., Wang, Y., Ning, C., Zheng, S., Huang, J.: Effect of mechanical activation on solid-state synthesis process of neodymium disilicate ceramic pigment. Dyes Pigm. 145, 160–167 (2017). https://doi.org/10.1016/j.dyepig.2017.06.005

    Article  CAS  Google Scholar 

  97. Bondioli, F., Andreola, F., Barbieri, L., Manfredini, T.: Effect of rice husk ash (RHA) in the synthesis of (Pr, Zr) SiO4 ceramic pigment. J. Eur. Ceram. Soc. 27(12), 3483–3488 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.01.019

    Article  CAS  Google Scholar 

  98. Vishnu, V.S., George, G., Divya, V., Reddy, M.L.P.: Synthesis and characterization of new environmentally benign tantalum-doped Ce0. 8Zr0. 2O2 yellow pigments: applications in coloring of plastics. Dyes Pigm. 82(1), 53–57 (2009). https://doi.org/10.1016/j.dyepig.2008.11.001

    Article  CAS  Google Scholar 

  99. Llusar, M., Forés, A., Badenes, J.A., Calbo, J.: Colour analysis of some cobalt-based blue pigments. J. Eur. Ceram. Soc. 21(8), 1121–1130 (2001). https://doi.org/10.1016/S0955-2219(00)00295-8

    Article  CAS  Google Scholar 

  100. Khattab, R.M., Sadek, H.E.H., Gaber, A.A.: Synthesis of CoxMg1− xAl2O4 nanospinel pigments by microwave combustion method. Ceram. Int. 43(1), 234–243 (2017). https://doi.org/10.1016/j.ceramint.2016.09.144

    Article  CAS  Google Scholar 

  101. Novais, R.M., Seabra, M.P., Amaral, J.S., Pullar, R.C.: Hidden value in low-cost inorganic pigments as potentially valuable magnetic materials. Ceram. Int. 42(8), 9605–9612 (2016). https://doi.org/10.1016/j.ceramint.2016.03.045

    Article  CAS  Google Scholar 

  102. Ahmed, I.S., Dessouki, H.A., Ali, A.A.: Synthesis and characterization of new nano-particles as blue ceramic pigment. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 71(2), 616–620 (2008). https://doi.org/10.1016/j.saa.2007.12.050

    Article  CAS  Google Scholar 

  103. Zhang, Y., Zhao, Y., Wang, Z.: Effective synthesis of green nano-sized ceramic pigments by co-doping Zn2+, Cr3+ and Sm3+ into the cobalt-aluminate. Int. J. Appl. Ceram. Technol. (2020). https://doi.org/10.1111/ijac.13550

  104. Matteucci, F., Cruciani, G., Dondi, M., Guarini, G.: Colouring mechanisms in rutile-based ceramic pigments. Castellon. 2004, (2004)

  105. Ocaña, M., Espinós, J.P., Carda, J.B.: Synthesis, through pyrolysis of aerosols, of YIn1 − xMnxO3 blue pigments and their efficiency for colouring glazes. Dyes Pigm. 91(3), 501–507 (2011). https://doi.org/10.1016/j.dyepig.2011.03.009

    Article  CAS  Google Scholar 

  106. Tian, G., Wang, W., Mu, B., Wang, Q., Wang, A.: Cost-efficient, vivid and stable red hybrid pigments derived from naturally available sepiolite and halloysite. Ceram. Int. 43(2), 1862–1869 (2017). https://doi.org/10.1016/j.ceramint.2016.10.145

    Article  CAS  Google Scholar 

  107. Dolić, S.D., Jovanović, D.J., Štrbac, D., Far, L.Đ.: Improved coloristic properties and high NIR reflectance of environment-friendly yellow pigments based on bismuth vanadate. Ceram. Int. 44(18), 22731–22737 (2018). https://doi.org/10.1016/j.ceramint.2018.09.057

    Article  CAS  Google Scholar 

  108. Sharafeev, S.: V-ZrSiO4 ceramic pigments obtained from chemically activated natural zircon. J. Econ. Soc. Sci. 14, 4 (2019) http://earchive.tpu.ru/handle/11683/55726

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandalal Acharjee.

Ethics declarations

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Informed consent

For this type of study, formal consent is not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharjee, N., Ganguly, S.K., Sarangi, B. et al. A review of various ceramic pigment preparation and characterization methodologies for applications. J Aust Ceram Soc 59, 303–323 (2023). https://doi.org/10.1007/s41779-023-00853-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00853-3

Keywords

Navigation