Skip to main content
Log in

Facile synthesis of MgAl2O4 spinel matrix nanocomposite with TiC, AlTi3, and Al2O3 reinforcements by mechanical alloying

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

MgAl2O4 spinel matrix nanocomposite with TiC, AlTi3, and Al2O3 was directly fabricated using the mechanical alloying (MA) method with Mg, TiO2, Al, and graphite as the starting powder mixture. This methodology was used to synthesize magnesium aluminate spinel (MSA) matrix nanocomposite with having the advantage of no subsequent heat treatment. The mixture of the powders was milled at room temperature using a high-energy planetary ball mill with a vial rotation speed of 400 rpm in the air. The phases and morphological analysis after the MA process were characterized by X-ray diffraction and scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS). Followed by 20 h of ball-milling, all the desired phases of MgAl2O4, TiC, AlTi3, and Al2O3 appeared in XRD results, and also a small fraction of raw materials remained. The major reactions to synthesize MgAl2O4/TiC-AlTi3-Al2O3 spinel matrix nanocomposite were the reduction of TiO2 by Al and Mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ganesh, I.: A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. Int. Mater. Rev. 58, 63–112 (2013)

    Article  CAS  Google Scholar 

  2. Goldstein, A.: Correlation between MgAl2O4-spinel structure, processing factors and functional properties of transparent parts (progress review). J. Eur. Ceram. Soc. 32, 2869–2886 (2012)

    Article  CAS  Google Scholar 

  3. Sickafus, K.E., Wills, J.M., Grimes, N.W.: Structure of spinel. J. Am. Ceram. Soc. 82, 3279–3292 (1999)

    Article  CAS  Google Scholar 

  4. Ball, J.A., Murphy, S.T., Grimes, R.W., Bacorisen, D., Smith, R., Uberuaga, B.P., Sickafus, K.E.: Defect processes in MgAl2O4 spinel. Solid State Sci. 10, 717–722 (2008)

    Article  CAS  Google Scholar 

  5. Bosi, F., Skogby, H., Fregola, R.A., Hålenius, U.: Crystal chemistry of spinels in the system MgAl2O4-MgV2O4-Mg2VO4. Am. Mineral. 101, 580–586 (2016)

    Article  Google Scholar 

  6. Belding, J.H., Letzgus, E.A.: Process for producing magnesium aluminate spinel. US Patent 3 950 504, 13 April 1976

  7. Magne, P., Belser, U.: Esthetic improvements and in vitro testing of In-Ceram Alumina and Spinell ceramic. Int J Prosthodont. 10(5), 459–466 (1997)

    CAS  Google Scholar 

  8. Kingery, W.D., Bowen, H.K., Uhlmann, D.R.: Introduction to Ceramics, 2nd edn. John Wiley and Sons, New York (1976)

  9. Kingery, W.D., Bowen, H.K., Uhlmann, D.R.: Introduction to Ceramics, 1st edn. John Wiley and Sons, New York (1976)

  10. Li, J.G., Ikegami, T., Lee, J.H., Mori, T.: Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant. J. Eur. Ceram. Soc. 11, 2866–2868 (2000)

    Google Scholar 

  11. Song, H.L., Yu, X.F., Zhang, L., Wang, T.J., Qiao, M., Zhang, J., Liu, P., Wang, X.L.: Magnesium aluminate planar waveguides fabricated by C-ion implantation with different energies and fluences. Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms 362, 62–67 (2015)

    Article  CAS  Google Scholar 

  12. Mathur, S.: NATO ASI Series. In: Pauleau, Y. (ed.) Chemical Physics of Thin Film Deposition for Micro- and Nano-Technologies, p. 91. Kluwer Academic Publications, Dordrecht (2002)

  13. Angappan, S., Berchmans, L.J., Augustin, C.O.: Mater. Lett. Sintering behaviour of MgAb04-a prospective anode material. Mater. Lett. 58, 2283–2289 (2004)

    Article  CAS  Google Scholar 

  14. Waqif, M., Saur, O., Lavalley, J.C., Wang, Y., Morrow, B.A.: Evaluation of magnesium aluminate spinel as a sulfur dioxide transfer catalyst. Appl. Catal. 71, 319–331 (1991)

    Article  CAS  Google Scholar 

  15. Wang, J.A., Li, C.L.: SO2 adsorption and thermal stability and reducibility of sulfates formed on the magnesium–aluminate spinel sulfur-transfer catalystAppl. Surf. Sci 161, 406–416 (2000)

    Article  CAS  Google Scholar 

  16. Maschio, R.D., Fabbri, B., Fiori, C.: Industrial applications of refractories containing magnesium aluminate spinel. Ind. Ceram 8, 121–126 (1996)

    Google Scholar 

  17. Mori, J., Watanabe, N., Yoshimura, M., Oguchi, Y., Kawakami, T.: Material design of monolithic refractories for steel ladle. Bull. Am. Ceram. Soc 69, 1172–1176 (1990)

    CAS  Google Scholar 

  18. Li, W.C., Comotti, M., Lu, A.H., Schuth, F.: Nanocast mesoporous MgAl2O4 spinel monoliths as support for highly active gold CO oxidation catalyst. Chem. Commun 16, 1772–1774 (2006)

    Article  Google Scholar 

  19. Li, F.T., Zhao, Y., Liu, Y., Hao, Y.-J., Liu, R.-H., Zhao, D.-S.: Solution combustion synthesis and visible light-induced photocatalytic activity of mixed amorphous and crystalline MgAl2O4 nanopowders. Chem. Eng. J. 173, 750–759 (2011)

    Article  CAS  Google Scholar 

  20. Kehres, J., Jakobsen, J.G., Andreasen, J.W., Wagner, J.B., Liu, H., Molenbroek, A., Sehested, J., Chorkendor, I., Vegge, T.: Dynamical properties of a Ru/MgAl2O4 catalyst during reduction and dry methane reforming. J. Phys. Chem. C 116, 21407–21415 (2012)

    Article  CAS  Google Scholar 

  21. Kim, B.-H., Yang, E.-H., Moon, D.J., Kim, S.W.: Ni/MgO-MgAl2O4 catalysts with bimodal pore structure for steam-CO2-reforming of methane. J. Nanosci. Nanotechnol 15, 5959–5962 (2015)

    Article  CAS  Google Scholar 

  22. Shimizu, Y., Arai, H., Seiyama, T.: Theoretical studies on the impedance-humidity characteristics of ceramic humidity sensors. Sens. Actuators 7, 11–22 (1985)

    Article  CAS  Google Scholar 

  23. Wang, Z., Chang, C.-L., Zhao, X., Qian, W., Zhang, X., Xie, Z., Hwang, B.-H., Hu, C., Shen, J., Hui, R.: MgAl2O4-based humidity-sensing material for potential application in PEM fuel cells. J. Power Sources 190, 351–355 (2009)

    Article  CAS  Google Scholar 

  24. Song, W., Ferrandez, D.M.P., van Haandel, L., Liu, P., Nijhuis, T.A., Hensen, E.J.M.: Selective propylene oxidation to acrolein by gold dispersed on MgCuCr2O4 spinel. ACS Catal 5, 1100–1111 (2015)

    Article  CAS  Google Scholar 

  25. Mei, D., Dagle, V.L., Xing, R., Albrecht, K.O., Dagle, R.A.: Steam reforming of ethylene glycol over MgAl2O4 supported Rh, Ni, and Co catalysts. ACS Catal 6, 315–325 (2016)

    Article  CAS  Google Scholar 

  26. Zhang, G.Q., Xia, B.Y., Xiao, C., Yu, L., Wang, X., Xie, Y., Lou, X.W.: General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries. Angew. Chem. Int. Ed 52, 8643–8647 (2013)

    Article  CAS  Google Scholar 

  27. Mei, D., Lebarbier, V.M., Rousseau, R., Glezakou, V.-A., Albrecht, K.O., Kovarik, L., Flake, M., Dagle, R.A.: Comparative investigation of benzene steam reforming over spinel supported Rh and Ir catalysts. ACS Catal 3, 1133–1143 (2013)

    Article  CAS  Google Scholar 

  28. Mei, D., Glezakou, V.-A., Lebarbier, V., Kovarik, L., Wan, H., Albrecht, K.O., Gerber, M., Rousseau, R., Dagle, R.A.: Highly active and stable MgAl2O4-supported Rh and Ir catalysts for methane steam reforming: a combined experimental and theoretical study. J. Catal 316, 11–23 (2014)

    Article  CAS  Google Scholar 

  29. Hui, L.I., Heng-Yong, W.E.I., Yi, C.U.I., Rong-Li, S.A.N.G., Jing-Long, B.U., Ying-Na, W.E.I., Jian, L.I.N., Jun-Hong, Z.H.A.O.: Synthesis and characterisation of MgAl2O4 spinel nanopowders via nonhydrolytic sol–gel route. J. Ceram. Soc. Jpn. 125, 0100–0104 (2017)

    Article  Google Scholar 

  30. Alvar, E.N., Rezaei, M., Alvar, H.N.: Synthesis of mesoporous nanocrystalline MgAl2O4 spinel via surfactant assisted precipitation route. Powder Technol 198, 275–278 (2010)

    Article  CAS  Google Scholar 

  31. Miroliaee, A., Salehirad, A., Rezvani, A.R.: Ion-pair complex precursor approach to fabricate high surface area nanopowders of MgAl2O4 spinel. Mater. Chem. Phys 151, 312–317 (2015)

    Article  CAS  Google Scholar 

  32. Pati, R.K., Pramanik, P.: Low-temperature chemical synthesis of nanocrystalline MgAl2O4 spinel powder. J. Am. Ceram. Soc 83, 1822–1824 (2000)

    Article  CAS  Google Scholar 

  33. Amini, M.M., Mirzaee, M., Sepanj, N.: The effect of solution chemistry on the preparation of MgAl2O4 by hydrothermal-assisted sol–gel processing. Mater. Res. Bull. 42, 563–570 (2007)

    Article  CAS  Google Scholar 

  34. Lazau, R.I.R.: Combustion synthesis, characterization and sintering behavior of magnesium aluminate (MgAl2O4) powders. Mater. Chem. Phys. 115, 645–648 (2009)

    Article  Google Scholar 

  35. Salem, S.: Application of autoignition technique for synthesis of magnesium aluminate spinel in nano scale: influence of starting solution pH on physico-chemical characteristics of particles. Mater. Chem. Phys. 155, 59–66 (2015)

    Article  CAS  Google Scholar 

  36. Khalil, N.M., Hassan, M.B., Ewais, E.M.M., Saleh, F.A.: Sintering, mechanical and refractory properties of MA spinel prepared via co-precipitation and sol–gel techniques. J. Alloy. Compd. 496, 600–607 (2010)

    Article  CAS  Google Scholar 

  37. Nakagawa, H., Ebisu, K., Zhang, M., Kitaura, M.: Luminescence properties and afterglow in spinel crystals doped with trivalent Tb ions. J. Lumin 102–103, 590–596 (2003)

    Article  Google Scholar 

  38. Jeong, H., Kang, M.: (2010), Hydrogen production from butane steam reforming over Ni/Ag loaded MgAl2O4 catalyst. Appl. Catal. B 95, 446–455 (2010)

    Article  CAS  Google Scholar 

  39. Ganesh, I., Saha, P., Mahajan, R., Srinivas, B., Johnson, R.: Microwave assisted solid state reaction synthesis of MgAl2O4 spinel powders. J. Euro. Ceram. Soc. 24, 201–207 (2004)

    Article  CAS  Google Scholar 

  40. Zhang, Z.H., Li, N.: Effect of polymorphism of Al2O3 on sintering and grain growth of magnesium aluminate spinel. Ceram. Int. 31, 583–589 (2005)

    Article  CAS  Google Scholar 

  41. Sainz, M.A., Mazzoni, A.D., Aglietti, E.F., Caballero, A.: Thermochemical stability of spinel (MgO·Al2O3) under strong reducing conditions. Mater. Chem. Phys. 86, 399–408 (2004)

    Article  CAS  Google Scholar 

  42. Ping, L.R., Azad, A.M., Dung, T.W.: Magnesium aluminate (MgAl2O4) spinel produced via self-heat-sustained (SHS) technique. Mater. Res. Bull. 36, 1417–1430 (2001)

    Article  Google Scholar 

  43. Sieber, H., Hesse, D., Panb, X., St, Sen, Heydenreich, J.: TEM investigations of spinel-forming solid state reactions: reaction mechanism, film orientation, and interface structure during MgAl2O4, formation on MgO (001) and A12O3, (11.2) single crystal substrates. Z. Anorg. Allg. Chem. 622, 1658–1666 (1996)

    Article  CAS  Google Scholar 

  44. Pati, K., Pramanik, P.: Low-temperature chemical synthesis of nanocrystalline MgAl2O4 spinel powder. J. Am. Ceram. Soc. 83, 1822–1824 (2000)

    Article  CAS  Google Scholar 

  45. Barros, B.S., Melo, P.S., Kiminami, R.H.G.A., Costa, A.C.F.M., de Sa, G.F., Alves, S., Jr.: Photophysical properties of Eu3+ and Tb3+doped ZnAl2O4 phosphors obtained by combustion reaction. J. Mater Sci. 41, 4744–4748 (2006)

    Article  CAS  Google Scholar 

  46. Lima, S.A.M., Sigoli, F.A., Davolos, M.R., Jafelicci, M., Jr.: Europium (III)-containing zinc oxide from Pechini method. J. Alloys Comp. 344, 280–284 (2002)

    Article  CAS  Google Scholar 

  47. Li, H., Wei, H.Y., Cui, Y., Sang, R.L., Bu, J.L., Wei, Y.N., Zhao, J.H.: Synthesis and characterisation of MgAl2O4 spinel nanopowders via nonhydrolytic sol–gel route. J. Ceram. Soc. Japan 2017(125), 100–104 (2004)

    Google Scholar 

  48. Evans, O.R., Bell, A.T., Tilley, T.D.: Oxidative dehydrogenation of propane over vanadia-based catalysts supported on high-surface-area mesoporous MgAl2O4. J. Catal. 226, 292–300 (2004)

    Article  CAS  Google Scholar 

  49. Parvarinezhad, S., Salehi, M., Kademinia, S.: Solid state synthesis of MgAl2O4 nanomaterials and solar light-induced photocatalytic removal of Malachite green. Int. J. Nano Dimens. 10(1), 89–104 (2019)

    CAS  Google Scholar 

  50. Alotaibi, S.H., Zaki, Z.I.: Mechanical properties of high density MgAl2O4/TiC/W compositeprepared via self-propagating synthesis with direct consolidation technique. Mater. Res. Express 6, 105–532 (2019)

    Article  Google Scholar 

  51. Ping, L.R., Azad, A.-M., Dung, T.W.: Magnesium aluminate (MgAl2O4) spinel produced via self-heat sustained (SHS) technique. Mater. Res. Bull. 36(7–8), 1417–1430 (2001)

    Article  Google Scholar 

  52. Bocanegra, S.A., Ballarini, A.D., Scelza, O.A., de Miguel, S.R.: The influence of the synthesis routes of MgAl2O4 on its properties and behavior as support of dehydrogenation catalysts. Mater. Chem. Phys. 111(2–3), 534–541 (2008)

    Article  CAS  Google Scholar 

  53. Figueredo, G.P.D., Carvalho, A.F.M.D., Medeiros, R.L.B.D.A., Silva, F.M., Macêdo, H.P.D., Melo, M.A.D.F., Melo, D.M.D.A.: Synthesis of MgAl2O4 by gelatin method: effect of temperature and time of calcination in crystalline structure. Mater. Res. 20(Suppl. 2), 254–259 (2017)

    Article  Google Scholar 

  54. Díaz Barriga Arceo, L.G., González Reyes, L., Rivera Olvera, J.N., Medina Ovando, A., Garibay Febles, V.: Intercalated intermetallic compounds AlTi3 and Fe2Ti in microrods and microtubes obtained by invariant reaction of mechanically milled system Al43Ti36Fe21. Materials 12, 380 (2019)

    Article  Google Scholar 

  55. Alsawat, M., Altalhi, T., Alotaibi, N.F., Zaki, Z.I.: Titanium carbide—titanium boride composites by self propagating high temperature synthesis approach: influence of zirconia additives on the mechanical properties. Results Phys. 13, 102–292 (2019)

    Article  Google Scholar 

  56. Shul’pekov, A.M., Lyamina, G.V.: Electrical and thermomechanical properties of materials based on nonstoichiometric titanium carbide prepared by self-propagating high-temperature synthesis. Inorg. Mater. 47, 722–727 (2011)

    Article  Google Scholar 

  57. Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., Payne, M.C.: First principles methods using CASTEP. Z. Kristallogr. 220(5–6), 567–570 (2005)

    Article  CAS  Google Scholar 

  58. Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Harsnip, P.J., Clark, S.J., Payne, M.C.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 27–17 (2002)

    Article  Google Scholar 

  59. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D.: Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 10–45 (1992)

    Article  Google Scholar 

  60. Hwang, H.Y., et al.: Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012)

    Article  CAS  Google Scholar 

  61. Hsieh, D., et al.: Observation of unconventional quantum spin textures in topological insulators. Science 323, 919–922 (2009)

    Article  CAS  Google Scholar 

  62. Riley, J.M., Mazzola, F., Dendzik, M., Michiardi, M., Takayama, T., Bawden, L., Granerød, C., Leandersson, M., Balasubramanian, T., Hoesch, M., Kim, T.K., Takagi, H., Meevasana, W., Hofmann, P.H., Bahramy, M.S., Wells, J.W., King, P.D.C.: Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor. Nat. Phys. 10, 835–839 (2014)

    Article  CAS  Google Scholar 

  63. Medjanik, K., Fedchenko, O., Chernov, S., Kutnyakhov, D., Ellguth, M., Oelsner, A., Schönhense, B., Peixoto, T.R.F., Lutz, P., Min, C.-H., Reinert, F., Däster, S., Acremann, Y., Viefhaus, J., Wurth, W., Elmers, H.J., Schönhense, G.: Direct 3D mapping of the Fermi surface and Fermi velocity. Nat. Mater. 16, 615–621 (2017)

    Article  CAS  Google Scholar 

  64. Naher, M.I., Naqib, S.H.: Structural, elastic, electronic, bonding, and optical properties of topological CaSn3 semimetal. J. Alloy. Compd. 829, 154–509 (2020)

    Article  Google Scholar 

  65. Xu, J.H., Oguchi, T., Freeman, A.J.: Crystal structure, phase stability, and magnetism in Ni3V. Phys. Rev. B 35, 3641–86 (1987)

    Article  Google Scholar 

  66. Hong, T., Watson-Yang, T.J., Freeman, A.J., Oguchi, T., Xu, J.H.: Crystal structure, phase stability, and electronic structure of Ti-Al intermetallics: TiAl3. Phys. Rev. B 41, 12462 (1990)

    Article  CAS  Google Scholar 

  67. Abel, T., Bryan, G., Norman, M.: The formation of the first star in the universe. Science 295, 93–98 (2002)

    Article  CAS  Google Scholar 

  68. Hüfner, S.: Photoelectron spectroscopy. Springer-Verlag, Berlin (1995)

    Book  Google Scholar 

  69. Campuzano, J.C., Kaminski, A., Fretwell, H., Mesot, J., Sato, T., Takahashi, T., Norman, M., Randeria, M., Kadowaki, K., Hinks, D.: The role of angle-resolved photoemission in understanding the high temperature superconductors. J. Phys. Chem. Solids 62, 35–39 (2001)

    Article  CAS  Google Scholar 

  70. Greber, T., Kreutz, T.J., Osterwalder, J.: Photoemission above the Fermi level: the top of the minority d band in nickel. Phys. Rev. Lett. 79, 44–65 (1997)

    Article  Google Scholar 

  71. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 38–65 (1996)

    Article  Google Scholar 

  72. Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 78–92 (1990)

    Article  Google Scholar 

  73. Fischer, T.H., Almlof, J.: General methods for geometry and wave function optimization. J. Phys. Chem. 96, 97–68 (1992)

    Article  Google Scholar 

  74. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 51–88 (1976)

    Article  Google Scholar 

  75. Francis, G.P., Payne, M.C.: Journal of Physics: Condensed Matter Finite basis set corrections to total energy pseudopotential calculations. J. Phys. Condens. Matter 2, 43–95 (1990)

    Article  Google Scholar 

  76. Williamson, G.K., Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Met. 1, 22–31 (1953)

    Article  CAS  Google Scholar 

  77. Ju, Y., Shen, T., Wang, D.: Bonding behavior between reactive powder concrete and normal strength concrete. Construct. Build. Mater. 242, 118024–118031 (2020)

    Article  CAS  Google Scholar 

  78. Zarezadeh Mehrizi, M., Beygi, R., Eisaabadi, G.H.: Synthesis of Al/TiC–Al2O3 nanocomposite by mechanical alloying and subsequent heat treatment. Ceram. Int. 42, 8895–8899 (2016)

    Article  Google Scholar 

  79. Suzuki, T.S., Nagumo, M.: Synthesis of TiAl-Al2Ti4C2 composite by reaction milling. Mater. Sci. Forum. 179–181, 189–194 (1995)

  80. Hoseini, S.M.H., Hoseini, S.A., Nouri, A.R., Masnabadi, R., Hassanbeygi, V.: Process parameters and metallurgical studies of A516-Gr70 steel at various temperatures under warm deep-drawing. J Fail. Anal. Preven 21, 1894–1901 (2021)

    Article  Google Scholar 

  81. Laobuthee, A., Wongkasemjit, S., Traversa, E., Laine, R.M.: (2000), MgAl2O4 spinel powders from oxide one pot synthesis (OOPS) process for ceramic humidity sensors. J. Eur. Ceram. Soc 20, 91–97 (2000)

    Article  CAS  Google Scholar 

  82. Ding, Z., Zhang, M., Han, J.: Synthesis of magnesium aluminate powders utilizing the solubility relationships in the Mg–Al–Oxalic acid–H2O system. Harbin Institute of Technology, Harbin 150001. China Bulg. J. Phys 30, 152–157 (2003)

    Google Scholar 

  83. Song, W., Liu, P., Hensen, E.J.M.: A Mechanism of gas-phase alcohol oxidation at the interface of Au nanoparticles and a MgCuCr2O4 spinel support. Catal. Sci. Technol 4, 2997–3003 (2014)

    Article  CAS  Google Scholar 

  84. Liu, P., Zhu, X., Yang, S., Li, T., Hensen, E.J.M.: On the metalsupport synergy for selective gas-phase ethanol oxidation over MgCuCr2O4 supported metal nanoparticle catalysts. J. Catal 331, 138–146 (2015)

    Article  CAS  Google Scholar 

  85. Liu, P., Hensen, E.J.M.: Highly efficient and robust Au/ MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J. Am. Chem. Soc 135, 14032–14035 (2013)

    Article  CAS  Google Scholar 

  86. Villa, A., Gaiassi, A., Rossetti, I., Bianchi, C.L., van Benthem, K., Veith, G.M., Prati, L.: Au on MgAl2O4 spinels: the effect of support surface properties in glycerol oxidation. J. Catal 275, 108–116 (2010)

    Article  CAS  Google Scholar 

  87. Naskar, M., Chatterjee, M.: Magnesium aluminate (MgAl2O4) spinel powders from water-based sols. J. Am. Ceram. Soc 88, 38–44 (2005)

    Article  CAS  Google Scholar 

  88. Jia, X.L., Zhang, H.J., Yan, Y.J., Jie, L.Z.: Synthesis and characterisation of MgAl2O4 spinel nanopowders via nonhydrolytic sol–gel route. Mater. Sci. Eng. A 379, 112–118 (2004)

    Google Scholar 

  89. Sanjabi, S., Obeydavi, A.: Synthesis and characterization of nanocrystalline MgAl2O4 spinel via modified sol–gel method. J. Alloys Compd. 645, 535–540 (2015)

    Article  CAS  Google Scholar 

  90. Behera, S.K., Barpanda, P., Pratihar, S.K., Bhattacharyya, S.: Synthesis of magnesium–aluminium spinel from autoignition of citrate–nitrate gel. Mater. Lett. 58, 1625–1628 (2004)

    Article  Google Scholar 

  91. Nassar, M.Y., Ahmed, I.S., Samir, I.: A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol–gel auto combustion method and their photocatalytic properties. Spectrochim. Acta A 131, 329–334 (2014)

    Article  CAS  Google Scholar 

  92. Saberi, A., Fard, F.G., Sarpoolaky, H., Porada, M.W., Gerdes, T., Simon, R.: Improving the quality of nanocrystalline MgAl2O4 spinel coating on graphite by a prior oxidation treatment on the graphite surface. J. Alloys Compd. 462, 142–146 (2008)

    Article  CAS  Google Scholar 

  93. Padmaraj, O., Venkateswarlu, M., Satyanarayana, N.: Structural, electrical and dielectric properties of spinel type MgAl2O4 nanocrystalline ceramic particles synthesized by the gel-combustion method. Ceram. Int. 41, 3178–3185 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muhammad H. Hoseini.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseini, S.M.H., Adeli, M., Hoseini, S.A. et al. Facile synthesis of MgAl2O4 spinel matrix nanocomposite with TiC, AlTi3, and Al2O3 reinforcements by mechanical alloying. J Aust Ceram Soc 59, 269–280 (2023). https://doi.org/10.1007/s41779-023-00845-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00845-3

Keywords

Navigation