Skip to main content
Log in

Synthesis, characterization, and electrochemical properties of Sm0.5Sr0.5Zr1−xNixO3.25−x for solid oxide fuel cell applications

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Sm0.5Sr0.5Zr1−xNixO3.25−x (x = 0, 0.1, 0.3, 0.5, 0.7) oxides were synthesized via the solid-state reaction method. The structural and morphological properties were studied by X-ray diffraction, a laser size analyzer, and scanning electron microscopy. The Sm0.5Sr0.5Zr1−xNixO3.25−x (x = 0, 0.1, 0.3, 0.5, 0.7) cathodes were symmetrically deposited on a Ce0,8Sm0,17La0.03O1,9 electrolyte with the spin-coating method, and the area-specific resistance values were determined by electrochemical impedance spectroscopy. Results show that co-doping with the appropriate amount of nickel affects the structural and electrical properties of the cathode compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jacobson, A.J: Materials for solid oxide fuel cells. Chem. Mater. 22, 660 (2010). https://doi.org/10.1021/cm902640j

  2. Steele, B.C, Heinzel, A.: Materials for fuel-cell technologies. Nature. 414, 345 (2001). https://doi.org/10.1038/35104620

  3. Xu, X., Wang, W., Zhou, W., Shao, Z.: Recent advances in novel nanostructuring methods of perovskite electrocatalysts for energy-related applications. Small Methods. 2, 1800071 (2018). https://doi.org/10.1002/smtd.201800071

  4. Minh N.Q, Am J.: Ceramic fuel cells. Ceram. Soc. 76, 563 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03645.x

  5. Guo, Y., Bessaa, M., Aguado, S., Steil, M.C., Rembelski, D., Rieu, M., Viricelle, J.-P., Benameur, N., Guizard, C., Tardivat, C., Vernoux, P., Farrusseng, D.: An all porous solid oxide fuel cell (SOFC): a bridging technology between dual and single chamber SOFCs. Energy Environ. Sci. 6, 2119 (2013). https://doi.org/10.1039/C3EE40131F

  6. ,Zhu, Z., Li, M., Xia C, Bouwmeeste, H. M. J.: Bismuth-doped La1.75Sr0.25NiO4+δ as a novel cathode material for solid oxide fuel cells. J. Mater. Chem. A. 5, 14012 (2017). https://doi.org/10.1039/C7TA03381H

  7. Bansod, M.B., Khandale, A.P., Kumar, R.V., Bhoga, S.S.: Crystal structure, electrical and electrochemical properties of Cu co-doped Pr1.3Sr0.7NiO4+δ mixed ionic-electronic conductors (MIECs). Int. J. Hydrog. Energy. 43, 373 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.005

  8. Ferkhi, M., Yahia, H.A.: Electrochemical and morphological characterizations of La2-xNiO4±d (x = 0.01, 0.02, 0.03 and 0.05) as new cathodes materials for IT-SOFC. Mater. Res. Bull. 83, 268 (2016). https://doi.org/10.1016/j.materresbull.2016.06.009

  9. Aguadero, A., Escudero, M.J., Perez, M., Alonso, J.A., Pomjakushin, V.: Effect of Sr content on the crystal structure and electrical properties of the system La2−xSrxNiO4+δ (0 ≤ x ≤ 1). Solid State Ionics. 262, 416 (2014). https://doi.org/10.1039/B606316K

  10. Li, M., Zhao, M., Li, F., Zhou, W.K., Peterson, V., Xu, X., Shao, Z., Gentle, I., Zhu, Z.: A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C. Nat. Commun. 8, 13990 (2017). https://doi.org/10.1038/ncomms13990

  11. Lee, J.G., Park, J.H., Shul, Y.G.: Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm−2 at 550 °C. Nat. Commun. 5, 4050 (2014). https://doi.org/10.1038/ncomms5045

  12. Yoo, S.: Development of double-perovskite compounds as cathode materials for low-temperature solid oxide fuel cells. Chem. Int. Ed. 53, 13064 (2014). https://doi.org/10.1002/anie.201408888

  13. Zhou, W.: A highly active perovskite electrode for the oxygen reduction reaction below 600 C. Angew. Chem. Int. Ed. 52, 14036 (2013). https://doi.org/10.1002/anie.201307305

  14. Chen, D.: Compositional engineering of perovskite oxides for highly efficient oxygen reduction reactions. ACS Appl. Mater. Interf. 7, 8562(2015). https://doi.org/10.1021/acsami.5b00358

  15. Perez-Coll, D., Aguadero, A., Escudero, M.J., Nunez, P., Daza, L.: Optimization of the interface polarisation of the La2NiO4-based cathode working with the Ce1-xSmxO2-δ electrolyte system. J. Power. Sources. 178, 151 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.030

  16. Amow, G., Whitfield, P.S., Davidson, I.J., Hammond, R.P., Munnings, C.N., Skinner, S.J.: Structural and sintering characteristics of the La2Ni1−xCoxO4+δ series. Ceram. Intern. 30, 1635 (2004). https://doi.org/10.1016/j.ceramint.2003.12.164

  17. Sayers, R., Rieu, M., Lenormand, P., Ansart, F., Kilner, J.A., Skinner, S.J.: Development of lanthanum nickelate as a cathode for use in intermediate temperature solid oxide fuel cells. Solid State Ionics. 192, 531 (2011). https://doi.org/10.1016/j.ssi.2010.02.014

  18. Yin, J.W., Yin, Y.M., Lu, J., Zhang, C.N., Minh, Q., Ma, Z.F.: Structure and properties of novel cobalt-free oxides NdxSr1−xFe0.8Cu0.2O3−δ (0.3 ≤ x ≤ 0.7) as cathodes of intermediate temperature solid oxide fuel cells. J. Phys. Chem. C118, 13357 (2014). https://doi.org/10.1021/jp500371w

  19. Gao, L., Li, Q., Sun, L., Zhang, X., Huo, L., Zhao, H., Grenier, J.C.: A novel family of Nb doped Bi0.5Sr0.5FeO3-δ perovskite as cathode material for intermediate-temperature solid oxide fuel cells. J. Power Sources. 371, 86 (2017). https://doi.org/10.1016/j.jpowsour.2017.10.036

  20. Wei, Y., Tao, H., Shuai, L., Zhaohui, M., Chunwen, S., Changrong, X., Liquan, C.: Perovskite Sr1–xCexCoO3−δ (0.05 ≤ x ≤ 0.15) as superior cathodes for intermediate temperature solid oxide fuel cells. Appl. Mater. Interfaces. 5, 1143 (2013). https://doi.org/10.1021/am3029238

  21. Li, M., Wang, Y., Wang, Y., Chen, F., Xia, C.: Bismuth doped lanthanum ferrite perovskites as novel cathodes for intermediate-temperature solid oxide fuel cells. ACS Appl. Mater. Inter. 6, 11286 (2014). https://doi.org/10.1021/am5017045

  22. Yang, W., Zhang, H., Sun, C., Liu, L., Alonso, A.: Insight into the structure and functional application of the Sr0.95Ce0.05CoO3−δ cathode for solid oxide fuel cells. Inorg. Chem. 54, 3477 (2015). https://doi.org/10.1021/acs.inorgchem.5b00051

  23. Yoo, S., Kim, J., Song, S.Y., Lee, D.W.: Structural, electrical and electrochemical characteristics of La0.1Sr0.9Co1-xNbxO3-δ as a cathode material for intermediate temperature solid oxide fuel cells. RSC Adv. 4, 18710 (2014). https://doi.org/10.1039/C4RA02061H

  24. Zhang, L., Wang, Z., Cao, Z., Zhu, L., Li, P.J., Lu, Z.L.: High activity oxide Pr0.3Sr0.7Ti0.3Fe0.7O3-δ as cathode of SOEC for direct high-temperature steam electrolysis. Int. J. Hydrog. Energy. 42, 12104 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.043

  25. Wang, S., Jin, F., Li, L., Li, R.: Stability, compatibility and performance improvement of SrCo0.8Fe0.1Nb0.1O3 perovskite as a cathode for intermediate-temperature solid oxide fuel cells. Int. J. Hydrog. Energy. 42, 4465 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.015

  26. Dos Santos-Gomez, L., Compana, J.M., Bruque, S., Losilla, E.R., Marrero-Lopez, D.: Symmetric electrodes for solid oxide fuel cells based on Zr-doped SrFeO3−δ. J. Power. Sources. 279, 419 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.043

  27. Tu, H.Y., Takeda, Y., Imanishi, N., Yamamoto, O.: Ln1−xSrxCoO3 (Ln = Sm, Dy) for the electrode of solid oxide fuel cells. Solid. State. Ionics. 100, 283 (1997). https://doi.org/10.1016/S0167-2738(97)00360-3

  28. Ming Hung, I., Kuan-Zong F., Chung-Ta, L., Min-Hsiung H.: The synthesis and characterization of the Sm0.5Sr0.5Co1−xCuxO3−δ cathode by the glycine–nitrate process. J. Power. Sources. 193, 116 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.081

  29. Richter, J., Holtappels, P., Graule, T., Nakamura, T., Gauckler, L.J.: Materials design for perovskite SOFC cathodes. Monatsh. Chem. 140, 985 (2009). https://doi.org/10.1007/s00706-009-0153-3

  30. Massoud, K., Abdelwaheb, I., Sami, C., Abdessalem, K., Adel, M., Chaabane, C.: Electrochemical and structural study of Ce0.8Sm0.2xLaxO1.9 electrolyte materials for SOFC. Ceram. Intern. 39, 6175 (2013). https://doi.org/10.1016/j.ceramint.2013.01.036

  31. Massoud, K., Abdelwaheb, I., Sami, C., Adel, M., Chaaben, C.: Synthesis and electrical properties of co-doping with La3+, Nd3+, Y3+ , and Eu3+ citric acid-nitrate prepared samarium-doped ceria ceramics. Ceram. Intern. 39, 3873 (2013). https://doi.org/10.1016/j.ceramint.2012.10.230

  32. Liu, S., Yu, B., Zhang, W., Zhai, Y., Chen, J.: Electrochemical performance of Co-containing mixed oxides as oxygen electrode materials for intermediate-temperature solid oxide electrolysis cell. Int. J. Hydrog. Energy. 41, 15952 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.077

  33. Chen, L., Lu, C., Lu, Y., Fang, Z., Ni, Y., Xu, Z.: Microwave absorption and infrared performance of Sm0.5Sr0.5Co12xNixO3 (0 ≤ x ≤ 1.0) with the K2NiF4 structure. RSC Adv. 3, 3967 (2013). https://doi.org/10.1039/C3RA21711F

  34. Sivaraj, P., Abhilash, K.P., Nalini, B., Sunkulp, G., Zdeněk, S., Sudheer, K.Y., Christopher, S. P.: Prediction clue on the fading capacity of multi-walled carbon nanotube-decorated Li2 (Fe1–xTix) SiO4/C high-performance cathode materials. Energy Fuels. 35, 8321 (2021). https://doi.org/10.1021/acs.energyfuels.1c00269

  35. Du, Z., Zhao, H., Shen, Y., Wang, L.: Evaluation of La0.3Sr0.7Ti1-xCoxO3 as a potential cathode material for solid oxide fuel cells. J. Mater. Chem. A. 2, 10290 (2014). https://doi.org/10.1039/C4TA00658E

  36. Adler, S.B., Chen, X.Y., Wilson, J.R.: Mechanisms and rate laws for oxygen exchange on mixed-conducting oxide surfaces. J. Catal. 245, 91 (2007). https://doi.org/10.1016/j.jcat.2006.09.019

  37. Baek, S.W.,Lee, C., Bae, J.: Cathode properties of SmxSr1-x (Co,Fe,Ni)O3−δ/ Sm0.2Ce0.8O1.9 composite material for intermediate temperature-operating solid oxide fuel cell. J. Fuel Cell Sci. Techn. 6, 031010 (2009). https://doi.org/10.1115/1.3006308

  38. Baek, S.W., Bae, J.: Microstructure, sinterability and electrochemical properties of a Sm-Sr-(Co,Fe,Ni)-O cathode system for solid oxide fuel cells. ASME 7th international conference on fuel cell science engineering and technology, p 889 (2009). https://doi.org/10.1115/FuelCell2009-85141

  39. Tomkiewicz, A.C., Meloni, M., McIntosh, S.: On the link between bulk structure and surface activity of double perovskite based SOFC cathodes. Solid State Ionics. 260, 55 (2014). https://doi.org/10.1016/j.ssi.2014.03.015

  40. Meng, S., Jianhua, T., Ryan, O.: A promising cathode for intermediate temperature protonic ceramic fuel cells: BaCo0.4Fe0.4Zr0.2O3- δ. Royal. Soc. Chem. 3, 15769 (2013). https://doi.org/10.1039/C3RA41828F

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massoud Kahlaoui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garali, M., Kahlaoui, M., Yahyaoui, M. et al. Synthesis, characterization, and electrochemical properties of Sm0.5Sr0.5Zr1−xNixO3.25−x for solid oxide fuel cell applications. J Aust Ceram Soc 59, 19–27 (2023). https://doi.org/10.1007/s41779-022-00810-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00810-6

Keywords

Navigation