Skip to main content
Log in

A novel gypsum-based lightweight composite: a combined investigation of technical and self-cleaning properties

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In recent years, the focus in building facades has been on the development of self-cleaning ability in building environments for environmental remediation. However, other technical properties must not deteriorate in order to gain self-cleaning ability. Assessing other technical requirements along with self-cleaning performance, for which such studies are very limited, may reveal their potential under real conditions more clearly.

This study presents the production and detailed characterization of self-cleaning gypsum-based lightweight composite materials. The main goal of this study was to evaluate both self-cleaning abilities and other technical characteristics (physical, mechanical, and particularly thermal and acoustic) of this type of composite building materials together. In this study, nano-sized anatase TiO2 was added to the composite structures at different ratios (0, 1, 2.5, 5, 7.5, 10, 15, and 20 wt.%, based on the replacement of anhydrite binder) to obtain photocatalytic activity. The results reveal that even at low ratios such as 1 and 2.5 wt.%, the incorporation of TiO2 provides a high contribution to the self-cleaning effect. In addition, some technical features also improve at these levels, and some of them remain almost the same as the TiO2-free control specimen or within the standards. It has been determined that the use of TiO2 increases the porosity of the composites, thus improving the thermal and acoustic properties. In addition, the compressive strength of the specimens improved up to the usage level of 2.5% TiO2. It was also confirmed that the excess of TiO2 had a negative effect on self-cleaning as well as other technical properties. Additionally, the possible reasons for the unexpected decrease in photocatalytic rate (19.6 × 10−3 min−1) after 10 wt.% TiO2 ratio, which enables the highest photocatalytic activity, has been also explained in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Mishra, A., Mehta, A., Basu, S.: Clay supported TiO2 nanoparticles for photocatalytic degradation of environmental pollutants: a review. J. Environ. Chem. Eng. 6, 6088–6107 (2018). https://doi.org/10.1016/j.jece.2018.09.029

    Article  CAS  Google Scholar 

  2. Rasmussen, S.B., Portela, R., Suárez, S., Coronado, J.M., Rojas-Cervantes, M.L., Avila, P., Sánchez, B.: Hybrid TiO2-SiMgOx composite for combined chemisorption and photocatalytic elimination of gaseous H2S. Ind. Eng. Chem. Res. 49, 6685–6690 (2010). https://doi.org/10.1021/ie901733p

    Article  CAS  Google Scholar 

  3. Tobaldi, D.M., Graziani, L., Seabra, M.P., Hennetier, L., Ferreira, P., Quagliarini, E., Labrincha, J.A.: Functionalised exposed building materials: self-cleaning, photocatalytic and biofouling abilities. 43, 10316–10325 (2017). https://doi.org/10.1016/j.ceramint.2017.05.061

  4. Hernández-Ramírez, A., Medina-Ramírez, I., Bustos, E., Manríquez, J., Peralta-Hernández, J.M.: Photocatalytic semiconductors. Springer International Publishing, Cham (2015)

    Book  Google Scholar 

  5. Yavas, A., Guler, S., Kayalar, M.T., Sutcu, M., Erol, M., Gencel, O., Yaras, A., Erdogmus, E.: Effect of firing temperature on self-cleaning and photocatalytic performance of clay-based bricks under visible light irradiation. J. Aust. Ceram. Soc. (2021).https://doi.org/10.1007/s41779-021-00636-8

  6. Belver, C., Bedia, J., Rodriguez, J.J.: Titania–clay heterostructures with solar photocatalytic applications. Appl. Catal. B Environ. 176–177, 278–287 (2015). https://doi.org/10.1016/j.apcatb.2015.04.004

    Article  CAS  Google Scholar 

  7. Wen, J., Xie, J., Chen, X., Li, X.: A review on g-C 3 N 4 -based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017). https://doi.org/10.1016/j.apsusc.2016.07.030

    Article  CAS  Google Scholar 

  8. Pala, A., Politi, R.R., Kurşun, G., Erol, M., Bakal, F., Öner, G., Çelik, E.: Photocatalytic degradation of cyanide in wastewater using new generated nano-thin film photocatalyst. Surf. Coatings Technol. 271, 207–216 (2015). https://doi.org/10.1016/j.surfcoat.2014.12.032

    Article  CAS  Google Scholar 

  9. Fan, E., Hu, F., Miao, W., Xu, H., Shao, G., Liu, W., Li, M., Wang, H., Lu, H., Zhang, R.: Preparation of g-C3N4/vermiculite composite with improved visible light photocatalytic activity. Appl. Clay Sci. 197, 105789 (2020). https://doi.org/10.1016/j.clay.2020.105789

    Article  CAS  Google Scholar 

  10. Yao, G., Sun, Z., Zheng, S.: Synthesis and enhanced visible-light photocatalytic activity of wollastonite/g-C 3 N 4 composite. Mater. Res. Bull. 86, 186–193 (2017). https://doi.org/10.1016/j.materresbull.2016.10.028

    Article  CAS  Google Scholar 

  11. Yavaş, A., Güler, S., Erol, M.: Growth of ZnO nanoflowers: effects of anodization time and substrate roughness on structural, morphological, and wetting properties. J. Aust. Ceram. Soc. 56, 995–1003 (2020). https://doi.org/10.1007/s41779-019-00440-5

    Article  CAS  Google Scholar 

  12. Zhu, D., Zhou, Q.: Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: a review. Environ. Nanotechnology, Monit. Manag. 12, 100255 (2019). https://doi.org/10.1016/j.enmm.2019.100255

    Article  Google Scholar 

  13. Loncar, E., Radeka, M., Petrovic, S., Skapin, A., Rudic, O., Ranogajec, J.: Determination of the photocatalytic activity of TiO2 coatings on clay roofing tile substrates methylene blue as model pollutant. Acta Period. Technol. 125–133 (2009). https://doi.org/10.2298/apt0940125l

  14. Janus, M., Mądraszewski, S., Zajac, K., Kusiak-Nejman, E.: A new preparation method of cement with photocatalytic activity. Materials (Basel). 13, 1–12 (2020). https://doi.org/10.3390/ma13235540

    Article  CAS  Google Scholar 

  15. Baltes, L., Patachia, S., Tierean, M., Ekincioglu, O., Ozkul, H.M.: Photoactive glazed polymer-cement composite. Appl. Surf. Sci. 438, 84–95 (2018). https://doi.org/10.1016/j.apsusc.2017.09.068

    Article  CAS  Google Scholar 

  16. Tekin, D., Birhan, D., Kiziltas, H.: Thermal, photocatalytic, and antibacterial properties of calcinated nano-TiO2/polymer composites. Mater. Chem. Phys. 251, 123067 (2020). https://doi.org/10.1016/j.matchemphys.2020.123067

    Article  CAS  Google Scholar 

  17. Hamidi, F., Aslani, F.: Tio2-based photocatalytic cementitious composites: materials, properties, influential parameters, and assessment techniques. Nanomaterials. 9, (2019). https://doi.org/10.3390/nano9101444

  18. Zhao, A., Yang, J., Yang, E.H.: Self-cleaning engineered cementitious composites. Cem. Concr. Compos. 64, 74–83 (2015). https://doi.org/10.1016/j.cemconcomp.2015.09.007

    Article  CAS  Google Scholar 

  19. Boonen, E., Beeldens, A.: Photocatalytic roads: from lab tests to real scale applications. Eur. Transp. Res. Rev. 5, 79–89 (2013). https://doi.org/10.1007/s12544-012-0085-6

    Article  Google Scholar 

  20. Macphee, D.E., Folli, A.: Photocatalytic concretes — the interface between photocatalysis and cement chemistry. Cem. Concr. Res. 85, 48–54 (2016). https://doi.org/10.1016/j.cemconres.2016.03.007

    Article  CAS  Google Scholar 

  21. Diamanti, M.V., Luongo, N., Massari, S., Lupica Spagnolo, S., Daniotti, B., Pedeferri, M.P.: Durability of self-cleaning cement-based materials. Constr. Build. Mater. 280, 122442 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122442

    Article  CAS  Google Scholar 

  22. Tang, X., Rosseler, O., Chen, S., Houzé, S., Aulnoit, D., Lussier, M.J., Zhang, J., Ban-weiss, G., Gilbert, H., Levinson, R., Destaillats, H., Gobain, S.: Self-cleaning and de-pollution efficacies of photocatalytic architectural membranes. 281, (2021). https://doi.org/10.1016/j.apcatb.2020.119260

  23. González-Sánchez, J.F., Taşcı, B., Fernández, J.M., Navarro-Blasco, Alvarez, J.I.: Improvement of the depolluting and self-cleaning abilities of air lime mortars with dispersing admixtures. J. Clean. Prod. 292, (2021). https://doi.org/10.1016/j.jclepro.2021.126069

  24. Lettieri, M., Colangiuli, D., Masieri, M., Calia, A.: Field performances of nanosized TiO2 coated limestone for a self-cleaning building surface in an urban environment. Build. Environ. 147, 506–516 (2019). https://doi.org/10.1016/j.buildenv.2018.10.037

    Article  Google Scholar 

  25. Chen, J., Poon, C.: Photocatalytic construction and building materials: from fundamentals to applications. Build. Environ. 44, 1899–1906 (2009)

    Article  Google Scholar 

  26. Zajac, K., Janus, M., Morawski, A.W.: Improved self-cleaning properties of photocatalytic gypsum plaster enriched with glass fiber. Materials (Basel). 12, (2019). https://doi.org/10.3390/ma12030357

  27. Miao, J., Zhang, R., Zhang, L.: Photocatalytic degradations of three dyes with different chemical structures using ball-milled TiO2. Mater. Res. Bull. 97, 109–114 (2018). https://doi.org/10.1016/j.materresbull.2017.08.032

    Article  CAS  Google Scholar 

  28. Szczepanik, B.: Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: a review. Appl. Clay Sci. 141, 227–239 (2017). https://doi.org/10.1016/j.clay.2017.02.029

    Article  CAS  Google Scholar 

  29. García, L.D., Pastor, J.M., Peña, J.: Self cleaning and depolluting glass reinforced concrete panels: fabrication, optimization and durability evaluation. Constr. Build. Mater. 162, 9–19 (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.156

    Article  CAS  Google Scholar 

  30. Janus, M., Madraszewski, S., Zajac, K., Kusiak-Nejman, E., Morawski, A.W., Stephan, D.: Photocatalytic activity and mechanical properties of cements modified with TiO2/N. Materials (Basel). 12, (2019). https://doi.org/10.3390/ma12223756

  31. Smits, M., Huygh, D., Craeye, B., Lenaerts, S.: Effect of process parameters on the photocatalytic soot degradation on self-cleaning cementitious materials. Catal. Today. 230, 250–255 (2014). https://doi.org/10.1016/j.cattod.2013.10.001

    Article  CAS  Google Scholar 

  32. Smits, M., Chan, Ck., Tytgat, T., Craeye, B., Costarramone, N., Lacombe, S., Lenaerts, S.: Photocatalytic degradation of soot deposition: self-cleaning effect on titanium dioxide coated cementitious materials. Chem. Eng. J. 222, 411–418 (2013). https://doi.org/10.1016/j.cej.2013.02.089

    Article  CAS  Google Scholar 

  33. Wang, F., Sun, G., Zhang, W., Yang, L., Liu, P.: Performance of photocatalytic cementitious material : influence of substrate surface microstructure. 110, 175–181 (2016).https://doi.org/10.1016/j.conbuildmat.2015.11.030

  34. Moreira, M.A.N.S., Heitmann, A.P., Bezerra, A.C.S., Patrício, P.S.O., de Oliveira, L.C.A., Castro, C.S., de Souza, P.P.: Photocatalytic performance of cementitious materials with addition of red mud and Nb2O5 particles. Constr. Build. Mater. 259, 119851 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119851

    Article  CAS  Google Scholar 

  35. Wang, F., Yang, L., Sun, G., Guan, L., Hu, S.: The hierarchical porous structure of substrate enhanced photocatalytic activity of TiO2/cementitious materials. Constr. Build. Mater. 64, 488–495 (2014). https://doi.org/10.1016/j.conbuildmat.2014.04.073

    Article  Google Scholar 

  36. Rastogi, M., Vaish, R.: Visible light induced water detoxification through Portland cement composites reinforced with photocatalytic filler: a leap away from TiO2. Constr. Build. Mater. 120, 364–372 (2016). https://doi.org/10.1016/j.conbuildmat.2016.05.114

    Article  CAS  Google Scholar 

  37. Sikora, P., Cendrowski, K., Markowska-Szczupak, A., Horszczaruk, E., Mijowska, E.: The effects of silica/titania nanocomposite on the mechanical and bactericidal properties of cement mortars. Constr. Build. Mater. 150, 738–746 (2017). https://doi.org/10.1016/j.conbuildmat.2017.06.054

    Article  CAS  Google Scholar 

  38. Jimenez-Relinque, E., Rodriguez-Garcia, J.R., Castillo, A., Castellote, M.: Characteristics and efficiency of photocatalytic cementitious materials: type of binder, roughness and microstructure. Cem. Concr. Res. 71, 124–131 (2015). https://doi.org/10.1016/j.cemconres.2015.02.003

    Article  CAS  Google Scholar 

  39. Wang, Z., Gauvin, F., Feng, P., Brouwers, H.J.H., Yu, Q.: Self-cleaning and air purification performance of Portland cement paste with low dosages of nanodispersed TiO2 coatings. Constr. Build. Mater. 263, 120558 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120558

    Article  CAS  Google Scholar 

  40. Janus, M., Bubacz, K., Zatorska, J., Kusiak-Nejman, E., Czyzewski, A., Morawski, A.W.: Preliminary studies of photocatalytic activity of gypsum plasters containing TiO2 co-modified with nitrogen and carbon. Polish J. Chem. Technol. 17, 96–102 (2015). https://doi.org/10.1515/pjct-2015-0036

    Article  CAS  Google Scholar 

  41. Zajac˛, K., Czyżewski, A., Kaszyńska, M., Janus, M.: Combined effect of photocatalyst, superplasticizer, and glass fiber on the photocatalytic activity and technical parameters of gypsum. Catalysts. 10, 1–15 (2020). https://doi.org/10.3390/catal10040385

    Article  CAS  Google Scholar 

  42. Sulowska, A., Wysocka, I., Pelczarski, D., Karczewski, J., Zielińska-Jurek, A.: Hybrid TiO2-polyaniline photocatalysts and their application in building gypsum plasters. Materials (Basel). 13, (2020). https://doi.org/10.3390/ma13071516

  43. Janus, M., Zatorska, J., Zając, K., Kusiak-Nejman, E., Czyżewski, A., Morawski, A.W.: The mechanical and photocatalytic properties of modified gypsum materials. Mater. Sci. Eng. B. 236–237, 1–9 (2018). https://doi.org/10.1016/j.mseb.2018.11.015

    Article  CAS  Google Scholar 

  44. Graziani, L., Quagliarini, E., Bondioli, F., D’Orazio, M.: Durability of self-cleaning TiO2 coatings on fired clay brick façades: effects of UV exposure and wet & dry cycles. Build. Environ. 71, 193–203 (2014). https://doi.org/10.1016/j.buildenv.2013.10.005

    Article  Google Scholar 

  45. Vaiano, V., Sarno, G., Sannino, D., Ciambelli, P.: Photocatalytic properties of TiO2-functionalized tiles: influence of ceramic substrate. Res. Chem. Intermed. 41, 7995–8007 (2015). https://doi.org/10.1007/s11164-014-1872-6

    Article  CAS  Google Scholar 

  46. Radeka, M., Markov, S., Lončar, E., Rudić, O., Vučetić, S., Ranogajec, J.: Photocatalytic effects of TiO2 mesoporous coating immobilized on clay roofing tiles. J. Eur. Ceram. Soc. 34, 127–136 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.07.010

    Article  CAS  Google Scholar 

  47. Ranogajec, J., Marinkovic-Nedučin, R., Radeka, M., Ducman, V., Skarpin, A., Rudic, O., Zorić, D.: Photocatalytic and superhydrophilic phenomena of TiO2 coated clay roofing tiles. 11th Int. Conf. Exhib. Eur. Ceram. Soc. 2009. 2, 873–879 (2009). https://doi.org/10.2298/ciceq091214018r

  48. Christogerou, A., Koumpouri, D., Angelopoulos, G.N.: Development of photocatalytic coatings by thermal hydrolysis of TiCl4 on ceramic roofing tiles made from ferroalumina and evaluation of de-pollution properties. Materials (Basel). 13, 1–11 (2020). https://doi.org/10.3390/ma13030620

    Article  CAS  Google Scholar 

  49. Hadnadjev, M., Ranogajec, J., Petrovic, S., Markov, S., Ducman, V., Marinkovic-Neducin, R.: Design of self-cleaning TiO2 coating on clay roofing tiles. Philos. Mag. 90, 2989–3002 (2010). https://doi.org/10.1080/14786431003767017

    Article  CAS  Google Scholar 

  50. Rodrigues, D., Bergmann, C.P., Alves, A.K., Silva, J.: Photocatalytic efficient activity of Tio2 films deposited on ceramic tiles. 0–8 (2018)

  51. Rahayu, M., Sujito, Wibowo, E., Sutisna, S.: Study on the self-cleaning and thermal reducing abilities of TiO2 coated clay roof tile. AIP Conf. Proc. 2320, (2021). https://doi.org/10.1063/5.0037519

  52. Carmona-Quiroga, P.M., Martínez-Ramírez, S., Viles, H.A.: Efficiency and durability of a self-cleaning coating on concrete and stones under both natural and artificial ageing trials. Appl. Surf. Sci. 433, 312–320 (2018). https://doi.org/10.1016/j.apsusc.2017.10.052

    Article  CAS  Google Scholar 

  53. Cardellicchio, L.: Self-cleaning and colour-preserving efficiency of photocatalytic concrete: case study of the Jubilee Church in Rome, (2020)

  54. Lackhoff, M., Prieto, X., Nestle, N., Dehn, F., Niessner, R.: Photocatalytic activity of semiconductor-modified cement—influence of semiconductor type and cement ageing. Appl. Catal. B Environ. 43, 205–216 (2003)

    Article  CAS  Google Scholar 

  55. Meng, T., Yu, Y., Qian, X., Zhan, S., Qian, K.: Effect of nano-TiO2 on the mechanical properties of cement mortar. Constr. Build. Mater. 29, 241–245 (2012)

    Article  Google Scholar 

  56. Bo, Y.I.N., WANG, J., Wei, X.U., LONG, D., QIAO, W., LING, L.: Preparation of TiO2/mesoporous carbon composites and their photocatalytic performance for methyl orange degradation. New Carbon Mater. 28, 47–54 (2013)

  57. Yousefi, A., Allahverdi, A., Hejazi, P.: Effective dispersion of nano-TiO2 powder for enhancement of photocatalytic properties in cement mixes. Constr. Build. Mater. 41, 224–230 (2013)

    Article  Google Scholar 

  58. Strini, A., Schiavi, L.: Low irradiance toluene degradation activity of a cementitious photocatalytic material measured at constant pollutant concentration by a successive approximation method. Appl. Catal. B Environ. 103, 226–231 (2011)

    Article  CAS  Google Scholar 

  59. Ruot, B., Plassais, A., Olive, F., Guillot, L., Bonafous, L.: TiO2-containing cement pastes and mortars: measurements of the photocatalytic efficiency using a rhodamine B-based colourimetric test. Sol. Energy. 83, 1794–1801 (2009)

    Article  CAS  Google Scholar 

  60. Aïssa, A.H., Puzenat, E., Plassais, A., Herrmann, J.-M., Haehnel, C., Guillard, C.: Characterization and photocatalytic performance in air of cementitious materials containing TiO2. Case study of formaldehyde removal. Appl. Catal. B Environ. 107, 1–8 (2011)

    Article  Google Scholar 

  61. Ramirez, A.M., Demeestere, K., De Belie, N., Mäntylä, T., Levänen, E.: Titanium dioxide coated cementitious materials for air purifying purposes: preparation, characterization and toluene removal potential. Build. Environ. 45, 832–838 (2010)

    Article  Google Scholar 

  62. Serna, Á., del Rio, M., Palomo, J.G., González, M.: Improvement of gypsum plaster strain capacity by the addition of rubber particles from recycled tyres. Constr. Build. Mater. 35, 633–641 (2012)

    Article  Google Scholar 

  63. Pereira, A., Palha, F., de Brito, J. de, Silvestre, J.D.: Inspection and diagnosis system for gypsum plasters in partition walls and ceilings. Constr. Build. Mater. 25, 2146–2156 (2011)

  64. Wang, S., Yan, C., Xiao, F.: Quantitative energy performance assessment methods for existing buildings. Energy Build. 55, 873–888 (2012)

    Article  Google Scholar 

  65. Wells, E.M., Berges, M., Metcalf, M., Kinsella, A., Foreman, K., Dearborn, D.G., Greenberg, S.: Indoor air quality and occupant comfort in homes with deep versus conventional energy efficiency renovations. Build. Environ. 93, 331–338 (2015)

    Article  Google Scholar 

  66. Bilgin, F., Arıcı, M.: Effect of phase change materials on time lag, decrement factor and heat-saving. Acta Phys Pol A. 132, 1102–1105 (2017)

    Article  CAS  Google Scholar 

  67. Kilincarslan, Ş, Davraz, M., Akça, M.: The effect of pumice as aggregate on the mechanical and thermal properties of foam concrete. Arab. J. Geosci. 11, 1–6 (2018)

    Article  CAS  Google Scholar 

  68. Cetin, M.: Determining the bioclimatic comfort in Kastamonu City. Environ. Monit. Assess. 187, 1–10 (2015)

    Article  Google Scholar 

  69. Cetin, M., Adiguzel, F., Kaya, O., Sahap, A.: Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environ. Dev. Sustain. 20, 361–375 (2018)

    Article  Google Scholar 

  70. Topay, M.: Mapping of thermal comfort for outdoor recreation planning using GIS: the case of Isparta Province (Turkey). Turkish J. Agric. For. 37, 110–120 (2013)

    Google Scholar 

  71. Topay, M., Parladir, M.O.: Suitability analysis for alternative tourism activities with the help of GIS: a case study of Isparta province. J Agric Sci. 21, 300–309 (2015)

    Google Scholar 

  72. Aguado, S., Polo, A.C., Bernal, M.P., Coronas, J., Santamarı́a, J.: Removal of pollutants from indoor air using zeolite membranes. J. Memb. Sci. 240, 159–166 (2004)

    Article  CAS  Google Scholar 

  73. Giosuè, C., Pierpaoli, M., Mobili, A., Ruello, M.L., Tittarelli, F.: Influence of binders and lightweight aggregates on the properties of cementitious mortars: from traditional requirements to indoor air quality improvement. Materials (Basel). 10, 978 (2017)

    Article  Google Scholar 

  74. Ozga, I., Ghedini, N., Giosuè, C., Sabbioni, C., Tittarelli, F., Bonazza, A.: Assessment of air pollutant sources in the deposit on monuments by multivariate analysis. Sci. Total Environ. 490, 776–784 (2014)

    Article  CAS  Google Scholar 

  75. Lorencik, S., Yu, Q.L., Brouwers, H.J.H.: Design and performance evaluation of the functional coating for air purification under indoor conditions. Appl. Catal. B Environ. 168, 77–86 (2015)

    Article  Google Scholar 

  76. Meininghaus, R., Gunnarsen, L., Knudsen, H.N.: Diffusion and sorption of volatile organic compounds in building materials− impact on indoor air quality. Environ. Sci. Technol. 34, 3101–3108 (2000)

    Article  CAS  Google Scholar 

  77. Vieira, J., Senff, L., Gonçalves, H., Silva, L., Ferreira, V.M., Labrincha, J.A.: Functionalization of mortars for controlling the indoor ambient of buildings. Energy Build. 70, 224–236 (2014)

    Article  Google Scholar 

  78. Di Giuseppe, E., D’Orazio, M.: Moisture buffering “active” devices for indoor humidity control: Preliminary experimental evaluations. Energy Procedia. 62, 42–51 (2014)

    Article  Google Scholar 

  79. Janus, M., Zając, K., Ehm, C., Stephan, D.: Fast method for testing the photocatalytic performance of modified gypsum. Catalysts 9, 693 (2019)

    Article  CAS  Google Scholar 

  80. Kalkan, S.O., Gündüz, L.: A study on the usage of denim waste as reinforcement element in composite mortars on exterior building application. In: 12 International congress on advances in civil engineering, Istanbul. pp. 1–7 (2016)

  81. Doleželová, M., Scheinherrová, L., Krejsová, J., Keppert, M., Černý, R., Vimmrová, A.: Investigation of gypsum composites with different lightweight fillers. Constr. Build. Mater. 297, 123791 (2021)

    Article  Google Scholar 

  82. Gündüz, L., Kalkan, ŞO.: A technical evaluation on the determination of thermal comfort parametric properties of different originated expanded and exfoliated aggregates. Arab. J. Geosci. 12, 119 (2019)

    Article  Google Scholar 

  83. TS EN 1015–18 - Methods of test for mortar for masonry - part 18: determination of water absorption coefficient due to capillary action of hardened mortar. (2014)

  84. ASTM C597–16 - Standard test method for pulse velocity through concrete, ASTM International, West Conshohcken, PA. (2016)

  85. ASTM C109/C109M-21, Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50 mm] cube specimens). (2021)

  86. Bicer, A., Kar, F.: Thermal and mechanical properties of gypsum plaster mixed with expanded polystyrene and tragacanth. Therm. Sci. Eng. Prog. 1, 59–65 (2017)

    Article  Google Scholar 

  87. del Río-Merino, M., Vidales-Barriguete, A., Piña-Ramírez, C., Vitiello, V., Santa Cruz-Astorqui, J., Castelluccio, R.: A review of the research about gypsum mortars with waste aggregates. J. Build. Eng. 45, 103338 (2022)

    Article  Google Scholar 

  88. Vidales-Barriguete, A., Atanes-Sanchez, E., del Rio-Merino, M., Pina-Ramirez, C.: Analysis of the improved water-resistant properties of plaster compounds with the addition of plastic waste. Constr. Build. Mater. 230, 116956 (2020)

    Article  Google Scholar 

  89. Medina, N.F., Barbero-Barrera, M.M.: Mechanical and physical enhancement of gypsum composites through a synergic work of polypropylene fiber and recycled isostatic graphite filler. Constr. Build. Mater. 131, 165–177 (2017)

    Article  Google Scholar 

  90. López-Zaldívar, O., Lozano-Díez, R., del Cura, S.H., Mayor-Lobo, P., Hernández-Olivares, F.: Effects of water absorption on the microstructure of plaster with end-of-life tire rubber mortars. Constr. Build. Mater. 150, 558–567 (2017)

    Article  Google Scholar 

  91. TS EN 13279–1, Gypsum binders and gypsum plasters - part 1: definitions and requirements. , Ankara (2009)

  92. TS EN 998–1, Specification for mortar for masonry — part 1: rendering and plastering mortar. (2017)

  93. Andreassen, K., Nilssen, E.G., Ødegaard, C.M.: Analysis of shallow gas and fluid migration within the Plio-Pleistocene sedimentary succession of the SW Barents Sea continental margin using 3D seismic data. Geo-Marine Lett. 27, 155–171 (2007)

    Article  CAS  Google Scholar 

  94. Dertien, E., Regtien, P.P.L.: Sensors for mechatronics. Elsevier (2018)

  95. Gencel, O., del Coz Diaz, JJ., Sutcu, M., Koksal, F., Rabanal, FPÁ., Martinez-Barrera, G.: A novel lightweight gypsum composite with diatomite and polypropylene fibers. Constr. Build. Mater. 113, 732–740 (2016)

  96. Yakovlev, G., Drochytka, R., Pervushin, G., Grahov, V., Kalabina, D., Gordina, A., Ginchitskaya, J.: Structural and thermal insulation materials based on high-strength anhydrite binder. In: IOP Conference Series: Materials Science and Engineering. p. 32071. IOP Publishing (2019)

  97. Dima, C., Badanoiu, A., Cirstea, S., Nicoara, A.I., Stoleriu, S.: Lightweight gypsum materials with potential use for thermal insulations. Materials (Basel). 13, 5454 (2020)

    Article  CAS  Google Scholar 

  98. Yakovlev, G.I., Kalabina, D.A., Pervushin, G.N., Drochytka, R., Bazhenov, K.A., Gordina, A.F., Ginchitskaya, J.N.: Efficient heat-insulating material based on technogenic anhydrite. In: IOP Conference Series: Materials Science and Engineering. p. 12052. IOP Publishing (2019)

  99. Kuan, W.H., Chen, C.Y., Hu, C.Y.: Removal of methylene blue from water by γ-MnO 2, (2011)

  100. Mishra, D.D., Tan, G.: Visible photocatalytic degradation of methylene blue on magnetic SrFe12O19. J. Phys. Chem. Solids. 123, 157–161 (2018). https://doi.org/10.1016/J.JPCS.2018.07.018

    Article  CAS  Google Scholar 

  101. Dai, K., Lu, L., Dawson, G.: Development of UV-LED/TiO2 device and their application for photocatalytic degradation of methylene blue. J. Mater. Eng. Perform. 22, 1035–1040 (2013). https://doi.org/10.1007/s11665-012-0344-7

    Article  CAS  Google Scholar 

  102. Yogi, C., Kojima, K., Wada, N., Tokumoto, H., Takai, T., Mizoguchi, T., Tamiaki, H.: Photocatalytic degradation of methylene blue by TiO2 film and Au particles-TiO2 composite film. Thin Solid Films 516, 5881–5884 (2008). https://doi.org/10.1016/J.TSF.2007.10.050

    Article  CAS  Google Scholar 

  103. Erol, M., Ertugrul, O.: HIPed TiO2 dense pellets with improved photocatalytic performance. Ceram. Int. 44, 2991–2999 (2018). https://doi.org/10.1016/j.ceramint.2017.11.053

    Article  CAS  Google Scholar 

  104. Janus, M., Bubacz, K., Zatorska, J., Kusiak-Nejman, E., Czyżewski, A., Przepiórski, J., Morawski, A.W.: Induced self-cleaning properties towards reactive red 198 of the cement materials loaded with co-modified TiO2/N. C photocatalysts. React. Kinet. Mech. Catal. 113, 615–628 (2014). https://doi.org/10.1007/s11144-014-0749-4

    Article  CAS  Google Scholar 

  105. Lucas, S.S., Ferreira, V.M., De Aguiar, J.L.B.: Incorporation of titanium dioxide nanoparticles in mortars - ınfluence of microstructure in the hardened state properties and photocatalytic activity. Cem. Concr. Res. 43, 112–120 (2013). https://doi.org/10.1016/j.cemconres.2012.09.007

    Article  CAS  Google Scholar 

  106. Mugunthan, E., Saidutta, M.B., Jagadeeshbabu, P.E.: Visible light assisted photocatalytic degradation of diclofenac using TiO2-WO3 mixed oxide catalysts. Environ. Nanotechnology, Monit. Manag. 10, 322–330 (2018). https://doi.org/10.1016/J.ENMM.2018.07.012

  107. Low, W., Boonamnuayvitaya, V.: Enhancing the photocatalytic activity of TiO2 co-doping of graphene–Fe3+ ions for formaldehyde removal. J. Environ. Manage. 127, 142–149 (2013). https://doi.org/10.1016/J.JENVMAN.2013.04.029

    Article  CAS  Google Scholar 

  108. Yang, L., Wang, F., Shu, C., Liu, P., Zhang, W., Hu, S.: TiO2/porous cementitious composites: ınfluences of porosities and TiO2 loading levels on photocatalytic degradation of gaseous benzene. Constr. Build. Mater. 150, 774–780 (2017). https://doi.org/10.1016/J.CONBUILDMAT.2017.06.004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Yavaş.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DTA 47 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavaş, A., Kalkan, Ş.O., Güler, S. et al. A novel gypsum-based lightweight composite: a combined investigation of technical and self-cleaning properties. J Aust Ceram Soc 58, 981–998 (2022). https://doi.org/10.1007/s41779-022-00756-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00756-9

Keywords

Navigation