Skip to main content
Log in

Structural, electronic and electrical conduction behaviour of Gd3+ doped Ca2−xY2O5 metal oxide ceramic synthesised by solid state reaction method

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The present paper reports the structural, electronic and electrical conduction mechanisms of Ca2−xY2O5:xGd3+ (x = 0, 0.03 and 0.05 mol%) metal oxides synthesised by solid state reaction method. The computational crystal structure analysis confirms the formation of cubic structure along with space group Ia-3. The structural analysis confirms the shifting of the most intense peak towards the higher Bragg angle side. The morphological analysis shows the formation of clusters of grain of irregular shape and size. The frequency-dependent dielectric studies show that orientational and space charge polarisation are the dominant mechanisms in prepared compounds. The complex impedance spectroscopy shows that the conduction mechanism in Ca2−xY2O5:Gd3+ metal oxide is due to grain and grain boundary effect. The electrical modulus spectroscopy reveals the hopping of charge carriers between Ca2+ site and O2− site, respectively. The electrical conductivity in prepared metal oxide is due to small polaron hopping mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bredar, A.R.C., Chown, A.L., Burton, A.R., Farnum, B.H.: Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications. ACS Appl. Energy Mater. 3, 66–98 (2020). https://doi.org/10.1021/acsaem.9b01965

    Article  CAS  Google Scholar 

  2. Bansal, N.P.: Influence of several metal ions on the gelation activation energy of silicon tetraethoxide. J. Ame. Cera. Soc. 73, 2647–2652 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb06741.x

    Article  CAS  Google Scholar 

  3. Kuwabara, M., Ide, T.: CO gas sensitivity in porous semiconducting barium–titanate ceramics. Am. Ceram. Soc. Bull. 66, 1401–1405 (1987)

    CAS  Google Scholar 

  4. Chiu, C.M., Chang, Y.H.: The structure, electrical and sensing properties for CO of the La0.8Sr0.2Co1 – xNixO3 – δ system. Materials Science and Engineering A 266, 93–98 (1999)

    Article  Google Scholar 

  5. Joseph, B., Gopchandran, K.G., Manoj, P.K.: Optical and electrical properties of zinc oxide films prepared by spray pyrolysis. Bull. Mater. Sci. 22, 921–926 (1999)

    Article  CAS  Google Scholar 

  6. Dayan, N.J., Sainkar, S.R., Karekar, R.N.: Formulation and characterization of ZnO: Sb thick-film gas sensors. Thin Solid Films 325, 254–258 (1998)

    Article  CAS  Google Scholar 

  7. Krishnan, B., Nampoori, V.P.N.: Screen printed nanosized ZnO thick film. Bull. Mater. Sci. 28, 239–242 (2005)

    Article  CAS  Google Scholar 

  8. Som, S., Sharma, S.K.: Eu3+/Tb3+-codoped Y2O3 nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization. J. Phys. D Appl. Phys. 45, 415102 (2012). https://doi.org/10.1088/0022-3727/45/41/415102

    Article  CAS  Google Scholar 

  9. Qian, C., Zeng, T., Liu, H.: Synthesis and downconversion emission property of Yb2O3:Eu3+ nanosheets and nanotubes. Adv. Condens. Matter. Phys. 519869, 1–5(2013). https://doi.org/10.1155/2013/519869

  10. Srinivasan, M.P., Punithavelan, N.: Structural, morphological and dielectric investigations on NiO/CuO/ZnO combined semiconductor metal oxide structures based ternary nanocomposites. Mater. Res. Express 5, 075033 (2018)

    Article  Google Scholar 

  11. Mohamed, M.B., Sayed, K.E.: Structural, magnetic and dielectric properties of (PANI)–Ni0.5Zn0.5Fe1.5Cr0.5O4 nanocomposite. Composites Part B: Engineering 56, 270–278 (2014). https://doi.org/10.1016/j.compositesb.2013.08.038

    Article  CAS  Google Scholar 

  12. Saxena, P., Choudhary, P., Yadav, A.: Effect of transition metal substitution on structural and dielectric properties of Mg0.5Zn0.5−xCrxCo2O4 (0.0 ≤ x ≤ 0.5) cobaltite. J Mater Sci: Mater Electron 30, 7292–7300 (2019). https://doi.org/10.1007/s10854-019-01042-4

    Article  CAS  Google Scholar 

  13. Lakhane, M., Bogle, K., Khairnar, R., Dahiwale, S., Sharma, R., Mokale, V., Mahabole, M.: Dielectric properties of zeolite based metal oxide nanocomposites. Nano-Structures & Nano-Objects 17, 248–258 (2019). https://doi.org/10.1016/j.nanoso.2019.01.008

    Article  CAS  Google Scholar 

  14. Tack, L.W., Azam, M.A., Seman, R.N.A.R.: Structural and electronic properties of transition-metal oxides attached to a single-walled CNT as a lithium-ion battery electrode: a first-principles study. J. Phys. Chem. A 121, 2636–2642 (2017). https://doi.org/10.1021/acs.jpca.6b12904

    Article  CAS  Google Scholar 

  15. Skorodumova, N.V., Hermansson, K., Johansson, B.: Structural and electronic properties of the (100) surface and bulk of alkaline-earth metal oxides. Phys. Rev. B 72, 125414 (2005). https://doi.org/10.1103/PhysRevB.72.125414

    Article  CAS  Google Scholar 

  16. Robertson, J.: High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 28, 265–291 (2004). https://doi.org/10.1051/epjap:2004206

    Article  CAS  Google Scholar 

  17. Dong, M., Wang, H., Ye, C., Shen, L., Wang, Y., Zhang, J., Ye, Y.: Structure and electrical properties of sputtered TiO2/ZrO2 bilayer composite dielectrics upon annealing in nitrogen. Nanoscale Res. Lett. 7, 1–5 (2012). http://www.nanoscalereslett.com/content/7/1/31

  18. Choi, C., Lee, K.L., Narayanan, V.: Impact of diffusion less anneal using dynamic surface anneal on the electrical properties of a high-k/metal gate stack in metal-oxide-semiconductor devices. Appl. Phys. Lett. 98, 123506 (2011)

    Article  Google Scholar 

  19. Das, T., Mahata, C., Maiti, C.K., Miranda, E., Sutradhar, G., Bose, P.K.: Effects of Ti incorporation on the interface properties and band alignment of HfTaOx thin films on sulfur passivated GaAs. Appl. Phys. Lett. 98, 022901 (2011)

    Article  Google Scholar 

  20. Khomenkova, L., Portier, X., Marie, P., Gourbilleau, F.: Hafnium silicate dielectrics fabricated by RF magnetron sputtering. J. Non. Cryst. Solids 357, 1860 (2011)

    Article  CAS  Google Scholar 

  21. Feng, X.Y., Shen, C., Fang, X., Chen, C.H.: Synthesis of LiNi0.5Mn1.5O4 by solid-state reaction with improved electrochemical performance. J. All. Comp. 509, 3623–3626 (2011). https://doi.org/10.1016/j.jallcom.2010.12.116

    Article  CAS  Google Scholar 

  22. Parhi, P., Karthik, T.N., Manivannan, V.: Synthesis and characterization of metal tungstates by novel solid-state metathetic approach. J. All. Comp. 465, 380–386 (2008). https://doi.org/10.1016/j.jallcom.2007.10.089

    Article  CAS  Google Scholar 

  23. Damien, B., Fabienne, A., Thibault, C., Dimitri, S., Didier, B.A.: Solid-state synthesis of monazite-type compounds LnPO4 (Ln = La to Gd). Sol. Stat. Sci. 9, 432–439 (2007). https://doi.org/10.1016/j.solidstatesciences.2007.03.019

    Article  CAS  Google Scholar 

  24. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, 1–8 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  25. Rulis, P., Ouyang, L., Ching, W.Y.: Electronic structure and bonding in calcium apatite crystals: hydroxyapatite, fluorapatite, chlorapatite, and bromapatite. Phys. Rev. B 70, 155104 (2004). https://doi.org/10.1103/PhysRevB.70.155104

    Article  CAS  Google Scholar 

  26. Roy, R.K., Hirao, K., Krishnamurty, S., Pal, S.: Mulliken population analysis based evaluation of condensed Fukui function indices using fractional molecular charge. Journal of chemical physics 11, 2901–2907 (2001). https://doi.org/10.1063/1.1386699

    Article  CAS  Google Scholar 

  27. Jeria, J.S.G.: An empirical way to correct some drawbacks of Mulliken population analysis. J. Chil. Chem. Soc. 54, 482–485 (2009)

    Google Scholar 

  28. Stuchebrukhov, A.A.: Tunnelling currents in proteins: nonorthogonal atomic basis sets and Mulliken population analysis. J. Chem. Phys. 107, 6495–6498 (1997). https://doi.org/10.1063/1.474308

    Article  CAS  Google Scholar 

  29. Gnanasekaran, L., Hemamalini, R., Saravanan, R., Ravichandran, K., Gracia, F., Agarwal, S., Gupta, V.K.: Synthesis and characterization of metal oxides (CeO2, CuO, NiO, Mn3O4, SnO2 and ZnO) nanoparticles as photo catalysts for degradation of textile dyes. J. Photochem. & Photobio. B: Biology 173, 43–49 (2017). https://doi.org/10.1016/j.jphotobiol.2017.05.027

    Article  CAS  Google Scholar 

  30. Sudha, V., Murugadoss, G., Thangamuthu, R.: Structural and morphological tuning of Cu-based metal oxide nanoparticles by a facile chemical method and highly electrochemical sensing of sulphite. Sci Rep 11, 3431 (2021). https://doi.org/10.1038/s41598-021-82741-z

    Article  CAS  Google Scholar 

  31. Landers, J., Ortiz, J.C., Zong, K., Goswami, A., Asefa, T., Vishnyakov, A., Neimark, A.V.: In situ growth and characterization of metal oxide nanoparticles within polyelectrolyte membranes. Wiley VCH (2016). https://doi.org/10.1002/anie.201606178

    Article  Google Scholar 

  32. Hong, X., Liao, L.: Solution Processed Metal Oxide Thin Films for Electronic Applications. Metal Oxides Series 1, 31–39 (2020). https://doi.org/10.1016/B978-0-12-814930-0.00003-7

  33. Li, H., Han, D., Dong, J., Yu, W., Liang, Y., Luo, Z., Zhang, S., Zhang, X., Wang, Y.: Enhanced electrical properties of dual-layer channel ZnO thin film transistors prepared by atomic layer deposition. Appl. Surf. Sci. 439, 632–637 (2018). https://doi.org/10.1016/j.apsusc.2017.12.234

    Article  CAS  Google Scholar 

  34. Ruan, D.B., Liu, P.T., Gan, K.J., Chiu, Y.C., Yu, M.C., Chien, T.C., Chen, Y.H., YiKuo, P., Sze, S.M.: The influence on electrical characteristics of amorphous indium tungsten oxide thin film transistors with multi-stacked active layer structure. Thin Sol. Films 666, 94–99 (2018). https://doi.org/10.1016/j.tsf.2018.09.005

    Article  CAS  Google Scholar 

  35. Yang, J., Hu, Y., Jin, C., Zhuge, L.: Xuemei Wu, Structural and optical properties of Er-doped TiO2 thin films prepared by dual-frequency magnetron co-sputtering. Thin Solid Films 637, 9–13 (2017). https://doi.org/10.1016/j.tsf.2017.03.012

    Article  CAS  Google Scholar 

  36. Salama, A.H., Abdel-Karim, A.M.: Synthesis, characterization and dielectric properties of novel metal oxide–phthalocyanine nanocomposites. Egypt. J. Chem. 61, 281–294 (2018)

    Article  Google Scholar 

  37. Guo, Z., Liu, A., Meng, Y., Fan, C., Shin, B., Liu, G., Shan, F.: Solution-processed ytterbium oxide dielectrics for low-voltage thin-film transistors and inverters. Ceramics Int. 43, 15194–15200 (2017). https://doi.org/10.1016/j.ceramint.2017.08.052

    Article  CAS  Google Scholar 

  38. Kumar, A., Mondal, S., Rao, K.S.R.K.: Low temperature solution processed high-κ ZrO2 gate dielectrics for nanoelectonics. Appl. Sur. Sci. 370, 373–379 (2016). https://doi.org/10.1016/j.apsusc.2016.02.176

    Article  CAS  Google Scholar 

  39. Zhang, Q., Xia, G., Xia, W., Zhou, J., Wang, S.: Low-temperature solution-processed high-k ZrTiOx dielectric films for high-performance organic thin film transistors. Synth. Met. 210, 282–287 (2015). https://doi.org/10.1016/j.synthmet.2015.10.011

    Article  CAS  Google Scholar 

  40. Abdullah, M.M.: Facile growth, physical characterization, and dielectric response of as-grown NiO nanostructures. J. King Saud Uni. 32, 1048–1054 (2020). https://doi.org/10.1016/j.jksus.2019.09.009

    Article  Google Scholar 

  41. Perumal, R., Thanikaikarasan, S.: Thickness, structural and optical properties of electrodeposited NiO thin films. Materials Today: Proceedings 33, 3989–3992 (2020). https://doi.org/10.1016/j.matpr.2020.06.337

    Article  CAS  Google Scholar 

  42. Lanje, A.S., Sharma, S.J., Ningthoujam, R.S., Ahn, J.S., Pode, R.B.: Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method. Advanced Powder Tech. 24, 331–335 (2013). https://doi.org/10.1016/j.apt.2012.08.005

    Article  CAS  Google Scholar 

  43. Rai, P., Yu, Y.T.: Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application. Sens. & Actu. B: Chem. 173, 58–65 (2012). https://doi.org/10.1016/j.snb.2012.05.068

    Article  CAS  Google Scholar 

  44. Ameen, S., Akhtar, M.S., Song, M., Shin, H.S.: Metal oxide nanomaterials, conducting polymers and their nanocomposites for solar energy. InTech Open 1, 203–259 (2013). https://doi.org/10.5772/51432

  45. Skotheim, T.A., Reynolds, J.R.: Handbook of Conducting Polymers: Conjugated Polym. CRC Press, Boca Raton (2007)

    Google Scholar 

  46. Hossen, M.B., Hossain, A.K.M.A.: Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4. J. Adv. Ceram. 4, 217–225 (2015). https://doi.org/10.1007/s40145-015-0152-2

    Article  CAS  Google Scholar 

  47. Kumar, A., Singh, B.P., Choudhary, R.N.P., Thakur, A.K.: Characterization of electrical properties of Pb-modified BaSnO3 using impedance spectroscopy. Mater. Chem. Phys. 99, 150–159 (2006).https://doi.org/10.1016/j.matchemphys.2005.09.086

    Article  CAS  Google Scholar 

  48. Das, P.S., Chakraborty, P.K., Behera, B., Mohanty, N.K., Choudhary, R.N.P.: Impedance spectroscopy study of Na2SmV5O15 ceramics. J. Adv. Ceram. 3, 1–6 (2014). https://doi.org/10.1007/s40145-014-0087-z

    Article  CAS  Google Scholar 

  49. Lanfredi, S., Nobre, M.A.D.L.: Dielectric dispersion in Bi3 Zn2 Sb3 O14 ceramic: a pyrochlore type phase. Mat. Res. 6 (2003) 157–161,10.1590/ S1516-14392003000200008.[39] D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys.66, 3850–3857 (1989).https://doi.org/10.1063/1.344049

    Article  Google Scholar 

  50. Płcharski, J., Weiczorek, W.: PEO based composite solid electrolyte containing nasicon. Solid State Ionics 28,979–982 (1988).https://doi.org/10.1016/0167-2738(88)90315-3

    Article  Google Scholar 

  51. Singh, H., Kumar, A., Yadav, K.L.: Structural, dielectric, magnetic, magnetodielectric and impedance spectroscopic studies of multiferroic BiFeO3–BaTiO3 ceramics. Mater. Sci. Eng. 176, 540–547 (2011). https://doi.org/10.1016/j.mseb.2011.01.010

    Article  CAS  Google Scholar 

  52. Beg, S., Areqi, N.A.S.A., Haneef, S.: Haneef, Study of phase transition and ionic conductivity changes of Cd-substituted Bi4V2O11 – δ. Solid State Ionics 179, 2260–2264 (2008).https://doi.org/10.1016/j.ssi.2008.08.008

    Article  CAS  Google Scholar 

  53. Dasari, M.P., Godavarti, U., Mote, V.: Structural, morphological, magnetic and electrical properties of Ni-doped ZnO nanoparticles synthesized by co-precipitation method. Process. Appl. Ceram 12, 100–110 (2018). https://doi.org/10.2298/PAC1802100D

  54. Roling, B.: Scaling properties of the conductivity spectra of glasses and super cooled melts. Solid State Ionics 105, 185–193 (1998).https://doi.org/10.1016/S0167-2738(97)00463-3

    Article  CAS  Google Scholar 

  55. Liu, J., Duan, C.G., Yin, W.G., Mei, W.N., et al.: Dielectric permittivity and electric modulus in Bi2Ti4O11. J. Chem. Phys. 119, 2812–2819 (2003).https://doi.org/10.1063/1.1587685

    Article  CAS  Google Scholar 

  56. Bag, S., Das, P., Behera, B.: AC impedance spectroscopy and conductivity studies of Dy doped Bi4V2O11 ceramics. J. Theor. Appl. Phys. 11, 13–25 (2017). https://doi.org/10.1007/s40094-017-0246-z

    Article  Google Scholar 

  57. Shamim, M.K., Sharma, S., Sinha, S., Nasreen, E.: Dielectric relaxation and modulus spectroscopy analysis of (Na0:47 K0:47 Li0:06) NbO3 ceramics. J. Adv. Dielectr. 7, 1750020–1750031 (2017).https://doi.org/10.1142/S2010135X17500205

    Article  CAS  Google Scholar 

  58. Richert, R., Wagner, H.: The dielectric modulus: relaxation versus retardation. Solid State Ionics 105,167–173 (1998)

    Article  CAS  Google Scholar 

  59. Tsangaris, G.M., Psarras, G.C., Kouloumbi, N.: Electric modulus and interfacial polarization in composite polymeric systems. J. Mat. SCI. 33, 2027–2037 (1998)

    Article  CAS  Google Scholar 

  60. Behera, B., Nayak, P., Choudhary, R.N.P.: Studies of dielectric and impedance properties of KCa2V5O15 ceramics. J. Phy & Chem. Solids 69, 1990–1995 (2008).https://doi.org/10.1016/j.jpcs.2008.02.013

    Article  CAS  Google Scholar 

  61. Barik, S.K., Mahapatra, P.K., Choudhary, R.N.P.: Structural and electrical properties of Na1/2La1/2TiO3 ceramics. Appl. Phys. A 11, 199–203 (2006). https://doi.org/10.1007/s00339-006-3668-z.

  62. Cao, M.S., Hou, Z.L., Yuan, J., Xiong, L.T., Shi, X.L.: Low dielectric loss and non-Debye relaxation of gamma-Y2Si2O7 ceramic at elevated temperature in X-band. J. Appl. Phys.105, 106102 (2009).https://doi.org/10.1063/1.3117525

    Article  CAS  Google Scholar 

  63. Cao, M.S., Hou, Z.L., Yuan, J., et al.: The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010).https://doi.org/10.1016/j.carbon.2009.10.028

    Article  CAS  Google Scholar 

  64. Özdemir, Z.G., Kılıç, M., Karabul, Y.S., Erd¨onmez, S., Içelli, O.: The influence of the partially europium substitution on the AC electrical properties of BiSr2CaCu2O6.5 ceramics. Process. Appl. Ceram. 13, 323–332 (2019). https://doi.org/10.2298/PAC1904323O

  65. Jonscher, A.K.: The ‘universal’dielectric response. Nature 267, 673–679 (1977).https://doi.org/10.1109/CEIDP.1990.201316

    Article  CAS  Google Scholar 

  66. Funke, K.: Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111–195 (1993).https://doi.org/10.1016/0079-6786(93)90002-9

    Article  CAS  Google Scholar 

  67. Elliot, S.R.: A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–217 (1987).https://doi.org/10.1080/00018738700101971

    Article  Google Scholar 

  68. Roy, A.K., Singh, A., Kumari, K., Nath, K.A., Prasad, A., Prasad, K.: Electrical properties and AC conductivity of (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramic. ISRN Ceramics 2012, 854831–854841 (2012).https://doi.org/10.5402/2012/854831

    Article  CAS  Google Scholar 

  69. Maldzius, R., Sirviö, P., Sidaravicius, J., Lozovski, T., Backfolk, K., Rosenholm, J.B.: Temperature-dependence of electrical and dielectric properties of papers for electrophotography. J. Appl. Phys. 107, 114904 (2010).https://doi.org/10.1063/1.3386466

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhana Agrawal.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, S. Structural, electronic and electrical conduction behaviour of Gd3+ doped Ca2−xY2O5 metal oxide ceramic synthesised by solid state reaction method. J Aust Ceram Soc 58, 683–697 (2022). https://doi.org/10.1007/s41779-022-00720-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00720-7

Keywords

Navigation