Skip to main content
Log in

Effect of applying electric field on suspension stability during electrophoretic deposition of ceramic particles in nonaqueous media: a case study

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this paper, the variation of suspension stability under the electric field was studied. Ceramic suspensions such as YSZ/acetyl acetone, YSZ/1propanol, and SnO2/ethanol were analyzed by applying different voltages. The novel turbidimetry technique was employed to illustrate the stability changes versus electrophoretic deposition (EPD) time. Macro-photography was employed to study the colloidal stability before and after EPD. Also, the weight of the deposited particles was measured. Particles in the suspension were sediment after applying voltage, making the suspension transparent in our deposition cell, especially at 100 V. The electrical conductivity of suspension increased by applying the electric field, showing a peak at 100 V. The suspension conductivity measurements also revealed a peak at 100 V. The occurred transparency became more in-depth over time. As suspension stability is an essential factor for a successful EPD process, the electric field-assisted agglomeration of particles should be considered in tests to reach repeatable results. Our research showed that despite the use of high voltage in routine EPD research, the instability of suspensions and its effect on the results of the coating should be considered.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mori, Y., Nobuzane, Y., Nishimura, K., Yamada, K., Tsuchiya, K.: Thin film structure of titania nanoparticles prepared by electrophoretic deposition. Chem. Eng. Trans. 57, 1507–1512 (2017). https://doi.org/10.3303/CET1757252

    Article  Google Scholar 

  2. Besra, L., Liu, L.: A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater Sci. 52(1), 1–61 (2007). https://doi.org/10.1016/j.pmatsci.2006.07.001

    Article  CAS  Google Scholar 

  3. Hamaker, H.: Formation of a deposit by electrophoresis. Trans. Faraday Soc. 35, 279–287 (1940). https://doi.org/10.1039/TF9403500279

    Article  Google Scholar 

  4. Sarkar, P., Nicholson, P.S.: Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. J. Am. Ceram. Soc. 79(8), 1987–2002 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08929.x

    Article  CAS  Google Scholar 

  5. Besra, L., Pravanjan, S., Sarama, B., Bimal, S.: Electrophoretic deposition of alumina on stainless steel from non-aqueous suspension. J. Mater. Sci. 42(14), 5714–5721 (2007). https://doi.org/10.1007/s10853-006-0757-5

    Article  CAS  Google Scholar 

  6. Mohanty, G., Besra, L., Sarama, B., Bimal, S.: Optimization of electrophoretic deposition of alumina onto steel substrates from its suspension in iso-propanol using statistical design of experiments. Mater. Res. Bull. 43(7), 1814–1828 (2008). https://doi.org/10.1016/j.materresbull.2007.07.014

    Article  CAS  Google Scholar 

  7. Moreno, R., Ferrari, B.: Effect of the slurry properties on the homogeneity of alumina deposits obtained by aqueous electrophoretic deposition. Mater. Res. Bull. 35(6), 887–897 (2000). https://doi.org/10.1016/S0025-5408(00)00288-9

    Article  CAS  Google Scholar 

  8. Sadeghi, A.A., Ebadzadeh, T., Raissi, B., Ghashghaie, S., Fateminia, S.M.A.: Application of the multi-step EPD technique to fabricate thick TiO2 layers: effect of organic medium viscosity on the layer microstructure. J. Phys. Chem. B 117(6), 1731–1737 (2013). https://doi.org/10.1021/jp306976p

    Article  CAS  Google Scholar 

  9. Yavuz, M., Cabuk, M.: Electrorheological properties of pumice/silicone oil suspension. J. Mater. Sci. 42(6), 2132–2137 (2007). https://doi.org/10.1007/s10853-006-1296-9

    Article  CAS  Google Scholar 

  10. Lemaire, E., Lobry, L., Pannacci, N., Peters, F.: Viscosity of an electro-rheological suspension with internal rotations. J. Rheol. 52(3), 769–783 (2008). https://doi.org/10.1122/1.2903546

    Article  CAS  Google Scholar 

  11. Ahualli, S., Gonzalez, M.A., Delgado, A.V., Jimenez, M.L.: Dynamic electrophoretic mobility and electric permittivity of concentrated suspensions of plate-like gibbsite particles. J. Colloid Interface Sci. 502, 112–121 (2017). https://doi.org/10.1016/j.jcis.2017.04.072

    Article  CAS  Google Scholar 

  12. Shikinaka, K., Kimura, H.: Reversible viscosity change of nanotubular colloidal aqueous suspensions responding to an electric field. Colloids Surf., A 459, 1–3 (2014). https://doi.org/10.1016/j.colsurfa.2014.06.035

    Article  CAS  Google Scholar 

  13. Cañizares, P., Martinez, F., Jimenez, C., Lobato, J., Rodrigo, M.A.: Coagulation and electrocoagulation of wastes polluted with colloids. Sep. Sci. Technol. 42(10), 2157–2175 (2007). https://doi.org/10.1080/01496390701446530

    Article  CAS  Google Scholar 

  14. Qiao, X., Sun, A., Wang, C., Chu, C., Ma, S., Tang, X., Guo, J., Xu, G.: Electric field induced structural color changes of highly monodisperse hollow Fe3O4@ C colloidal suspensions. Colloids Surf., A 498, 74–80 (2016). https://doi.org/10.1016/j.colsurfa.2016.03.027

    Article  CAS  Google Scholar 

  15. B. Raissi, R. Riahifar, M. Sahba Yaghmaee, F. Taati-Asil, A. Aghaei, S. Chatrnoor, A.H. Taghadossi, R. Irankhah, and M. Karimi. DC-EPD of nanoceramic particles accelerated via anodic dissolution in organic media. Int. J. Mater. Res. 109(4): 356–361 (2018). https://doi.org/10.3139/146.111603

  16. Mollah, M.Y.A., Schennach, R., Parga, J.R., Cocke, D.: Electrocoagulation (EC)—science and applications. J. Hazard. Mater. 84(1), 29–41 (2001). https://doi.org/10.1016/s0304-3894(01)00176-5

    Article  CAS  Google Scholar 

  17. Peng, Z., Doroodchi, E., Evans, G.: DEM simulation of aggregation of suspended nanoparticles. Powder Technol. 204(1), 91–102 (2010). https://doi.org/10.1016/j.powtec.2010.07.023

    Article  CAS  Google Scholar 

  18. Farbod, M., Tadavani, S.K., Kiasat, A.: Surface oxidation and effect of electric field on dispersion and colloids stability of multiwalled carbon nanotubes. Colloids Surf., A 384(1), 685–690 (2011). https://doi.org/10.1016/j.colsurfa.2011.05.041

    Article  CAS  Google Scholar 

  19. S.S. Ahmadi, R. Riahifar, B. Raissi, M. Sahba Yaghmaee, H.S. Cornelis Metselaar M. Javaheri. Electrophoretic deposition of MWCNT on a PTFE layer for making working Electrode of oxygen sensor. J. Electrochem. Soc. 164(12) B506-B512 (2017). https://doi.org/10.1149/2.0461712jes.

  20. A.A. Sadeghi Ghazvini, E. Taheri-Nassaj, B. Raissi, R. Riahifar, and M. Sahba Yaghmaee. Effect of polyethylenimine addition and washing on stability and electrophoretic deposition of Co3O4 nanoparticles. J. Am. Ceram. Soc. 101(2) 553–561 (2018). https://doi.org/10.1111/jace.15244.

  21. Talebi, T., Raissi, B., Haji, M., Maghsoudipour, A.: The role of electrical conductivity of substrate on the YSZ film formed by EPD for solid oxide fuel cell applications. Int J Hydro Energy. 35(17), 9405–9410 (2010). https://doi.org/10.1016/j.ijhydene.2010.04.011

    Article  CAS  Google Scholar 

  22. Talebi, T., Haji, M., Raissi, B., Maghsoudipour, A.: YSZ electrolyte coating on NiO–YSZ composite by electrophoretic deposition for solid oxide fuel cells (SOFCs). Int. J. Hydrogen Energy 35(17), 9455–9459 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.021

    Article  CAS  Google Scholar 

  23. Talebi, T., Raissi, B., Maghsoudipour, A.: The role of addition of water to non-aqueous suspensions in electrophoretically deposited YSZ films for SOFCs. Int J Hydro Energy 35(17), 9434–9439 (2010). https://doi.org/10.1016/j.ijhydene.2009.12.152

    Article  CAS  Google Scholar 

  24. Talebi, T., Haji, M., Raissi, B.: Effect of sintering temperature on the microstructure, roughness and electrochemical impedance of electrophoretically deposited YSZ electrolyte for SOFCs. Int. J. Hydrogen Energy 35(17), 9420–9426 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.079

    Article  CAS  Google Scholar 

  25. T. Talebi, M. Hassan Sarrafi, M. Haji, B. Raissi, and A. Maghsoudipour. Investigation on microstructures of NiO–YSZ composite and Ni–YSZ cermet for SOFCs. Int. J. Hydro. Energy. 35(17) 9440–9447 (2010). https://doi.org/10.1016/j.ijhydene.2010.04.156

  26. Wiśniewska, M., Urban, T., Nosal-Wiercinska, A., Zarko, V.I., Gun’ko, V.M.: Comparison of stability properties of poly (acrylic acid) adsorbed on the surface of silica, alumina and mixed silica-alumina nanoparticles—application of turbidimetry method. Cent. Eur. J. Chem. 12(4), 476–479 (2014). https://doi.org/10.2478/s11532-013-0401-6

    Article  CAS  Google Scholar 

  27. Bernardo, F.O.C., Silva, J.M., Canevarolo, S.V.: Dispersed particle size characterization by in-line turbidimetry during polymer extrusion. Polym. Testing 70, 449–457 (2018). https://doi.org/10.1016/j.polymertesting.2018.08.005

    Article  CAS  Google Scholar 

  28. Sa’adati, H., Raissi, B., Riahifar, R., Sahbayaghmaee, M.: How preparation of suspensions affects the electrophoretic deposition phenomenon. J. Eur. Ceram. Soc. 36(2), 299–305 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.09.005

    Article  CAS  Google Scholar 

  29. N. Abavi Torghabeh, B. Raissi, R. Riahifar, M. Sahbayaghmaee, and Z, Minaei Bidgoli. Investigation of the flocculation and sedimentation of TiO2 nanoparticles in different alcoholic environments through turbidity measurements. J. Compos. Compd. 3(8) 159–163 (2021). https://doi.org/10.52547/jcc.3.3.2

  30. Kollath, V.O., Chen, Q., Closset, R., Luyten, J., Traina, K., Mullens, S., Boccaccini, A.R., Cloots, R.: AC vs. DC electrophoretic deposition of hydroxyapatite on titanium. J Eur. Ceram. Soc. 33(13–14), 2715–2721 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.04.030

    Article  CAS  Google Scholar 

  31. Lobry, L., Lemaire, E.: Viscosity decrease induced by a DC electric field in a suspension. J. Electrostat. 47(1–2), 61–69 (1999). https://doi.org/10.1016/S0304-3886(99)00024-8

    Article  CAS  Google Scholar 

  32. Pannacci, N., Lobry, L., Lemaire, E.: How insulating particles increase the conductivity of a suspension. Phys. Rev. Lett. 99(9), 094503 (2007). https://doi.org/10.1103/PhysRevLett.99.094503

    Article  CAS  Google Scholar 

  33. Biesheuvel, P.M., Verweij, H.: Theory of cast formation in electrophoretic deposition. J. Am. Ceram. Soc. 82(6), 1451–1455 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01939.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Raissi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torghabeh, N.A., Riahifar, R., Raissi, B. et al. Effect of applying electric field on suspension stability during electrophoretic deposition of ceramic particles in nonaqueous media: a case study. J Aust Ceram Soc 58, 735–745 (2022). https://doi.org/10.1007/s41779-021-00693-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00693-z

Keywords

Navigation