Skip to main content
Log in

Electrical conductivity behavior of ZrO2-MgO-Y2O3 ceramic: effect of heat treatment temperature

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The present work looked at the effect of the heat treatment temperatures on the electrical conductivity of ZrO2-MgO-Y2O3 ceramics, and their conduction behaviors were verified by analyzing the thermal behavior and structural changes. The results indicated that the heat treatment temperatures had a deterioration effect on the electrical conductivity of ZrO2-MgO-Y2O3 (1300–1500 °C). However, the deterioration effect was gradually restrained, and the conductivity exhibited an increasing trend when the temperatures further increased to 1600 °C. The possible cause was that the samples were equivalent to be further sintered at this temperature. Meanwhile, the mean diffusion distance of Mg ions in the ZrO2 lattice during cyclic heat treatment was evaluated, strongly correlated with the phase transformation and change of electrical conductivity of the sintered ZrO2-MgO-Y2O3 electrolyte ceramics. The research findings can be used to predict the changes of electrochemical properties of ZrO2(MgO) electrolyte ceramics during high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Choi, S.R., Bansal, N.P.: Mechanical behavior of zirconia/alumina composites. Ceram. Int. 31, 39–46 (2005)

    Article  CAS  Google Scholar 

  2. Huang, W., Shuk, P., Greenblatt, M., Groft, M., Chen, F., Liu, M.: Structural and electrical characterization of a novel mixed conductor: CeO2-Sm2O3-ZrO2 solid solution. J. Electrochem. Soc. 147, 4196–4202 (2000)

    Article  CAS  Google Scholar 

  3. Radford, K.C., Bratton, R.J.: Zirconia electrolyte cells. J. Mater. Sci. 14, 59–65 (1979)

    Article  CAS  Google Scholar 

  4. Koo, H.W., Park, H.J., Choi, G.M., Lee, H.G.: Electrochemical deoxidation of molten steel with application of an oxygen permeable membrane. ISIJ Int. 47, 689–698 (2007)

    Article  CAS  Google Scholar 

  5. Xiao, H.N., Gao, P.Z.: High performance structural ceramic and its application, pp. 3–78. Chemical Industry Press, Beijing (2006)

    Google Scholar 

  6. Aldebert, P., Traverse, J.P.: Structure and ionic mobility of zirconia at high temperature. J. Am. Ceram. Soc. 68, 34–40 (1985)

    Article  CAS  Google Scholar 

  7. Wei Liu, G.O., Yao, L., Nishijima, H., Pan, W.: Enhanced ionic conductivity in phase stabilized yttria-doped zirconia nanowires. Solid State Ion. 308, 34–39 (2017)

    Article  Google Scholar 

  8. Guo, X., Waser, R.: Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria. Prog. Mater. Sci. 51, 151–210 (2006)

    Article  CAS  Google Scholar 

  9. Wei, W.-C.J., Lin, Y.P.: Mechanical and thermal shock properties of size graded MgO-PSZ refractory. J. Eur. Ceram. Soc. 20, 1159–1167 (2000)

    Article  CAS  Google Scholar 

  10. M. Iwase, ChemInform Abstract: Developments in zirconia sensors during the 1980′-laboratory and in-plant applications in iron and steelmaking, Proceedings of the 1st International Chromium Steel and Alloys Congress 2 (1992) 49-61

  11. Liu, Q.: The development of high temperature electrochemical sensors for metallurgical processes. Solid State Ion. 86-88, 1037–1043 (1996)

    Article  CAS  Google Scholar 

  12. Wen, T.P., Yu, J.K., Jin, E.D., Liu, T., Hou, X.H., Sun, Q.Y.: Application of solid electrochemical sulfur sensor in the liquid iron. Sens Actuators, B. 279, 177–182 (2019)

    Article  CAS  Google Scholar 

  13. Wen, T.P., Jin, E.D., Yuan, L., Yu, J.K., Zhou, Y.T., Tian, C.: Structure and ionic conductivity of ZrO2(MgO)/CaO-Al2O3 bilayer system used as solid electrolyte for sulfur sensor. Mater. Res. Bull. 117, 113–119 (2019)

    Article  CAS  Google Scholar 

  14. Liu, T., Li, L., Yu, J.K.: An electrochemical sulfur sensor based on ZrO2(MgO) as solid electrolyte and ZrS2+MgS as auxiliary electrode. Sens Actuators, B. 139, 501–504 (2009)

    Article  CAS  Google Scholar 

  15. Mao, F.X., Yu, J.K., Liu, T., Jiang, Y.F.: Synthesis of an auxiliary electrode by laser cladding coating for in-situ electrochemical sulfur sensing. Mater. Lett. 138, 276–278 (2015)

    Article  CAS  Google Scholar 

  16. Okimura, T., Fukui, K., Maruhashi, S.: Development of zirconia electrolyte sensor with auxiliary electrode for the in situ measurement of dissolved silicon in molten iron. Sens Actuators, B. 1, 203–209 (1990)

    Article  CAS  Google Scholar 

  17. Wang, Q.S.: Thermodynamic analysis and experiment of auxiliary electrode silicon sensor. J. Trans. Tech. 22, 11–14 (2003)

    Google Scholar 

  18. Ju, L., Lu, H., Man, W., Li, Y., Guo, M.: Preparation of an electrochemical sensor for measuring the silicon content in molten iron. Sens Actuators, B. 240, 1189–1196 (2017)

    Article  CAS  Google Scholar 

  19. Wen, T.P., Yu, J.K., Jin, E.D., Yuan, L., Yu, Y.H., Liu, T., Tian, C.: A novel electrochemical sensor for phosphorus determination in the high phosphorus liquid iron. J. Mater. Res. Technol. 9, 3530–3536 (2020)

    Article  CAS  Google Scholar 

  20. Jiang, L., Guo, S.Q., Qiao, M.R., Zhang, M., Ding, W.Z.: Study on the structure and mechanical properties of magnesia partially stabilized zirconia during cyclic heating and cooling. Mater. Lett. 194, 26–29 (2017)

    Article  CAS  Google Scholar 

  21. An, S.L.: Phase transformation and thermal shock resistance of MgO-PSZ, Journal of Baotou University of. Iron and Steel Technology. 22, 305–309 (2003)

    Google Scholar 

  22. Lee, Y.W., Lee, S.C., Kim, H.S., Joung, C.Y., Degueldre, C.: Study on the mechanical properties and thermal conductivity of silicon carbide-, zirconia- and magnesia aluminate-based simulated inert matrix nuclear fuel materials after cyclic thermal shock. J. Nucl. Mater. 319, 15–23 (2003)

    Article  CAS  Google Scholar 

  23. Wen, T.P., Yuan, L., Liu, T., Sun, Q.Y., Jin, E.D., Tian, C., Yu, J.K.: Enhanced ionic conductivity and thermal shock resistance of MgO stabilized ZrO2 doped with Y2O3. Ceram. Int. 46, 19835–19842 (2020)

    Article  CAS  Google Scholar 

  24. Gaglieri, C., Alarcon, R.T., Rafael, D.G.M., Padovini, D.S.S., Pontes, F.M.L., Flávio, J.C.: Thermal study of ZrO2 nanoparticles: effect of heating and cooling cycles on solid-solid transition. Thermochim. Acta. 653, 59–61 (2017)

    Article  CAS  Google Scholar 

  25. Hu, Y.G., Xiao, J.Z., Xia, F., Zhang, H.B.: Effect of thermal treatment on microstructure and phase of partially-stabilized zirconia, Journal of Wuhan University of Technology-Mater. Sci. Ed. 28, 483–486 (2013)

    CAS  Google Scholar 

  26. Shukla, V., Balani, K., Subramaniam, A., Omar, S.: Effect of thermal aging on the phase stability of 1Yb2O3-xSc2O3-(99-x)ZrO2 (x=7, 8 mol %). J. Phys. Chem. C. 123, 21982–21992 (2019)

    Article  CAS  Google Scholar 

  27. Sreekumar, K.P., Ananthapadmanabhan, P.V., Venkatramani, N., Muraleedharan, K.V.: Effect of thermal treatment on phase composition and thermal shock resistance of plasma-sprayed calcia-stabilized zirconia-alumina composite coatings. J. Alloys Compd. 185, 169–175 (1992)

    Article  CAS  Google Scholar 

  28. Wang, Z.B., Zhou, C.G., Xu, H.B., Gong, S.K.: Effect of thermal treatment on the grain growth of nanostructured YSZ thermal barrier coating prepared by air plasma spraying. Chin. J. Aeronaut. 17, 119–123 (2004)

    Article  Google Scholar 

  29. Nowotny, J., Bak, T., Nowotny, M.K.: Charge transfer at oxygen/zircoina interface at elevated temperatures. Part 1: basic properties and terms. Advanced in applied ceramics. 104, 147–153 (2005)

    Article  CAS  Google Scholar 

  30. Wang, C.Z.: Solid electrolyte and chemical sensor. Metallurgical industry press, Beijing (2000)

    Google Scholar 

  31. Howard, C.J., Hill, R.J.: The polymorphs of zirconia: phase abundance and crystal structure by Rietveld analysis of neutron and X-ray diffraction data. J. Mater. Sci. 26, 127–134 (1991)

    Article  CAS  Google Scholar 

  32. Farmer, S.C., Heuer, A.H., Hannink, R.: Eutectoid decomposition of MgO-partially-stabilized ZrO2. J. Am. Ceram. Soc. 70(6), 431–440 (1987)

    Article  CAS  Google Scholar 

  33. Abe, F., Muneki, S., K.: Yagi Tetragonal to monoclinic transformation and microstructural evolution in ZrO2-9.7 mol% MgO during cyclic heating and cooling. J. Mater. Sci. 32, 513–522 (1997)

    Article  CAS  Google Scholar 

  34. Oishi, Y., Sakka, Y., Ando, K.: Cation interdiffusion in polycrystalline fluorite-cubic solid solutions. J. Nucl. Mater. 96, 23–28 (1981)

    Article  CAS  Google Scholar 

  35. Parkins, W.E., Dienes, G.J., Brown, F.W.: Pulse-annealing for the study of relaxation processes in solids. J. Appl. Phys. 22, 1012–1019 (1951)

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 52074070, No. 51974074 and No. 51874083), the State Key Program of National Natural Science Foundation of China (No. 51932008), and the Fundamental Research Funds for the Central Universities (N2124002-18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingkun Yu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, T., Yuan, L., Tian, C. et al. Electrical conductivity behavior of ZrO2-MgO-Y2O3 ceramic: effect of heat treatment temperature. J Aust Ceram Soc 58, 421–427 (2022). https://doi.org/10.1007/s41779-021-00686-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00686-y

Keywords

Navigation