Skip to main content

Advertisement

Log in

Push-out bond strength of Biodentine, MTA repair HP, and a new pre-mixed NeoPutty bioactive cement: scanning electron microscopy energy dispersive X-ray spectroscopy analysis

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The aim of this research was to evaluate the push-out bond strengths (PBSs) of three different calcium silicate-based cements abbreviated as Group 1 (NeoPutty), Group 2 (Biodentine), and Group 3 (MTA Repair HP). 15 root slices of 1 ± 0.1-mm thickness were obtained from the middle triad of the roots of 5 maxillary premolar teeth. In each slice, three canal-like cavities parallel to the root canal were created for the experimental groups (n = 15). After endodontic irrigation, Group 1: NeoPutty, Group 2: Biodentine, and Group 3: MTA Repair HP were placed to the cavities, randomly. After the PBS test, all samples were examined scanning electron microscope (SEM) to determine failure patterns. To evaluate the chemical composition of the materials, three samples, one from each group, were prepared. Samples were prepared using plexiglass molds of 10-mm diameter and 2-mm thickness. The materials were then examined by an energy-dispersive X-ray spectroscopy (EDX, Inca, Oxford Inst.) for surface element analysis. The values obtained from tests were evaluated statistically significant (p < 0.05). After the PBS test, while there was no statistically significant difference between NeoPutty and MTA Repair HP, there was a difference with Biodentine. Based on the findings from this study, it was concluded that Biodentine has the highest PBS values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Han, L., Okiji, T.: Bioactivity evaluation of three calcium silicate-based endodontic materials. Int Endod J 46(9), 808–814 (2013). https://doi.org/10.1111/iej.12062

    Article  CAS  Google Scholar 

  2. Nikhade, P., Kela, S., Chandak, M., Chandwani, N., Adwani, F.: Comparative evaluation of push-out bond strength of calcium silicate based materials: an ex-vivo study. IOSR-JDMS 1, 65–68 (2016)

    Google Scholar 

  3. Srinivasan, V., Waterhouse, P., Whitworth, J.: Mineral trioxide aggregate in paediatric dentistry. Int J Pediatr Dent 19(1), 34–47 (2009). https://doi.org/10.1111/j.1365-263X.2008.00959.x

    Article  Google Scholar 

  4. Bogen, G., Chandler, N.P.: Pulp preservation in immature permanent teeth. Endod Top 23(1), 131–152 (2010). https://doi.org/10.1111/j.1601-1546.2012.00286.x

    Article  Google Scholar 

  5. Gomes-Cornélio, A., Rodrigues, E., Salles, L., Mestieri, L., Faria, G., Guerreiro-Tanomaru, J., Tanomaru-Filho, M.: Bioactivity of MTA Plus, Biodentine and an experimental calcium silicate-based cement on human osteoblast-like cells. Int Endod J 50(1), 39–47 (2017). https://doi.org/10.1111/iej.12589

    Article  Google Scholar 

  6. Grech, L., Mallia, B., Camilleri, J.: Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater 29(2), e20–e28 (2013). https://doi.org/10.1016/j.dental.2012.11.007

    Article  CAS  Google Scholar 

  7. Aksoy, S., Ünal, M.: Shear bond strength of universal adhesive systems to a bioactive dentin substitute (Biodentine®) at different time intervals. Stomatological Dis Sci 1, 116–122 (2017)

    Google Scholar 

  8. Samiei, M., Ghasemi, N., Aghazadeh, M., Divband, B., Akbarzadeh, F.: Biocompatibility of mineral trioxide aggregate with TiO2 nanoparticles on human gingival fibroblasts. J Clin Exp Dent 9(2), e182 (2017)

    Google Scholar 

  9. Silva, E.J.N.L., Carvalho, N.K., da Costa LabancaGuberman, M.R., Prado, M., Senna, P.M., Souza, E.M., De-Deus, G.: Push-out bond strength of fast-setting mineral trioxide aggregate and pozzolan-based cements: ENDOCEM MTA and ENDOCEMs Zr. J Endod 43, 801–804 (2017). https://doi.org/10.1016/j.joen.2016.12.007

    Article  Google Scholar 

  10. Silva, G.F., Bosso, R., Ferino, R.V., Tanomaru-Filho, M., Bernardi, M.I., Guerreiro-Tanomaru, J.M., Cerri, P.S.: Microparticulated and nanoparticulated zirconium oxide added to calcium silicate cement: evaluation of physicochemical and biological properties. J Biomed Mater Res Part A 102(12), 4336–4345 (2014). https://doi.org/10.1002/jbm.a.35099

    Article  CAS  Google Scholar 

  11. Coomaraswamy, K.S., Lumley, P.J., Hofmann, M.P.: Effect of bismuth oxide radioopacifier content on the material properties of an endodontic Portland cement–based (MTA-like) system. J Endod 33(3), 295–298 (2007). https://doi.org/10.1016/j.joen.2006.11.018

    Article  Google Scholar 

  12. Formosa, L., Mallia, B., Camilleri, J.: The effect of curing conditions on the physical properties of tricalcium silicate cement for use as a dental biomaterial. Int Endod J 45(4), 326–336 (2012). https://doi.org/10.1111/j.1365-2591.2011.01980.x

    Article  CAS  Google Scholar 

  13. Grazziotin-Soares, R., Nekoofar, M., Davies, T., Bafail, A., Alhaddar, E., Hübler, R., Busato, A., Dummer, P.: Effect of bismuth oxide on white mineral trioxide aggregate: chemical characterization and physical properties. Int Endod J 47(6), 520–533 (2014). https://doi.org/10.1111/iej.12181

    Article  CAS  Google Scholar 

  14. Demarco, F.F., Corrêa, M.B., Cenci, M.S., Moraes, R.R., Opdam, N.J.: Longevity of posterior composite restorations: not only a matter of materials. Dent Mater 28(1), 87–101 (2012). https://doi.org/10.1016/j.dental.2011.09.003

    Article  CAS  Google Scholar 

  15. Samra, A.P.B., Ribeiro, D.G., Borges, C.P.F., Kossatz, S.: Influence of professional prophylaxis on reducing discoloration of different aesthetic restorative materials. J Dent 40, e71–e76 (2012). https://doi.org/10.1016/j.jdent.2012.06.003

    Article  CAS  Google Scholar 

  16. Bosso-Martelo, R., Guerreiro-Tanomaru, J.M., Viapiana, R., Berbert, F.L.C., Duarte, M.A.H., Tanomaru-Filho, M.: Physicochemical properties of calcium silicate cements associated with microparticulate and nanoparticulate radiopacifiers. Clin Oral Invest 20(1), 83–90 (2016)

    Article  Google Scholar 

  17. Duarte, M.A.H., Minotti, P.G., Rodrigues, C.T., Zapata, R.O., Bramante, C.M., Tanomaru Filho, M., Vivan, R.R., De Moraes, I.G., De Andrade, F.B.: Effect of different radiopacifying agents on the physicochemical properties of white Portland cement and white mineral trioxide aggregate. J Endod 38(3), 394–397 (2012). https://doi.org/10.1016/j.joen.2011.11.005

    Article  Google Scholar 

  18. Sun, Q., Meng, M., Steed, J.N., Sidow, S.J., Bergeron, B.E., Niu, L.-N., Ma, J.-Z., Tay, F.R.: Manoeuvrability and biocompatibility of endodontic tricalcium silicate-based putties. J Dent 104, 103530 (2021). https://doi.org/10.1016/j.jdent.2020.103530

    Article  CAS  Google Scholar 

  19. Babu, M.B., Raju, T., Varma, N.M., Dondapati, G.D., Podili, S., Sowjanya, T.: Acid challenge on push-out bond strength of three different tricalcium silicate cements: an in-vitro study. J. Pharm. Res. Int. 33(4), 72–79 (2021). https://doi.org/10.9734/jpri/2021/v33i431173

  20. Drummond, J., Sakaguchi, R., Racean, D., Wozny, J., Steinberg, A.: Testing mode and surface treatment effects on dentin bonding. J Biomed Mater Res 32(4), 533–541 (1996). https://doi.org/10.1002/(SICI)1097-4636(199612)32:4%3c533::AID-JBM6%3e3.0.CO;2-S

    Article  CAS  Google Scholar 

  21. Huffman, B., Mai, S., Pinna, L., Weller, R., Primus, C., Gutmann, J., Pashley, D.H., Tay, F.: Dislocation resistance of ProRoot Endo Sealer, a calcium silicate-based root canal sealer, from radicular dentine. Int Endod J 42(1), 34–46 (2009). https://doi.org/10.1111/j.1365-2591.2008.01490.x

    Article  CAS  Google Scholar 

  22. Reyes-Carmona, J.F., Felippe, M.S., Felippe, W.T.: The biomineralization ability of mineral trioxide aggregate and Portland cement on dentin enhances the push-out strength. J Endod 36(2), 286–291 (2010). https://doi.org/10.1016/j.joen.2009.10.009

    Article  Google Scholar 

  23. Goracci, C., Grandini, S., Bossù, M., Bertelli, E., Ferrari, M.: Laboratory assessment of the retentive potential of adhesive posts: a review. J Dent 35(11), 827–835 (2007). https://doi.org/10.1016/j.jdent.2007.07.009

    Article  CAS  Google Scholar 

  24. Hashem, A.A.R., Amin, S.A.W.: The effect of acidity on dislodgment resistance of mineral trioxide aggregate and bioaggregate in furcation perforations: an in vitro comparative study. J Endod 38(2), 245–249 (2012). https://doi.org/10.1016/j.joen.2011.09.013

    Article  Google Scholar 

  25. Shokouhinejad, N., Nekoofar, M.H., Iravani, A., Kharrazifard, M.J., Dummer, P.M.: Effect of acidic environment on the push-out bond strength of mineral trioxide aggregate. J Endod 36(5), 871–874 (2010). https://doi.org/10.1016/j.joen.2009.12.025

    Article  Google Scholar 

  26. Saghiri, M.A., Garcia-Godoy, F., Gutmann, J.L., Lotfi, M., Asatourian, A., Ahmadi, H.: Push-out bond strength of a nano-modified mineral trioxide aggregate. Dent Traumatol 29(4), 323–327 (2013). https://doi.org/10.1111/j.1600-9657.2012.01176.x

    Article  CAS  Google Scholar 

  27. McTigue, D.J., Subramanian, K., Kumar, A.: Case series: management of immature permanent teeth with pulpal necrosis: a case series. Pediatr Dent 35(1), 55–60 (2013)

    Google Scholar 

  28. Jainaen, A., Palamara, J., Messer, H.: Push-out bond strengths of the dentine–sealer interface with and without a main cone. Int Endod J 40(11), 882–890 (2007). https://doi.org/10.1111/j.1365-2591.2007.01308.x

    Article  CAS  Google Scholar 

  29. Guneser, M.B., Akbulut, M.B., Eldeniz, A.U.: Effect of various endodontic irrigants on the push-out bond strength of biodentine and conventional root perforation repair materials. J Endod 39(3), 380–384 (2013). https://doi.org/10.1016/j.joen.2012.11.033

    Article  Google Scholar 

  30. Scelza, M., Da Silva, D., Scelza, P., de Noronha, F., Barbosa, I., Souza, E.D., Deus, G.: Influence of a new push-out test method on the bond strength of three resin-based sealers. Int Endod J 48(8), 801–806 (2015). https://doi.org/10.1111/iej.12378

    Article  CAS  Google Scholar 

  31. Silva, E.J., Carvalho, N.K., Zanon, M., Senna, P.M., De-Deus, G., Zuolo, M.L., Zaia, A.A.: Push-out bond strength of MTA HP, a new high-plasticity calcium silicate-based cement. Braz. Oral Res. 30(1), S1806-83242016000100269 (2016). https://doi.org/10.1590/1807-3107BOR-2016.vol30.0084

  32. Atmeh, A., Chong, E., Richard, G., Festy, F., Watson, T.: Dentin-cement interfacial interaction: calcium silicates and polyalkenoates. J Dent Res 91(5), 454–459 (2012). https://doi.org/10.1177/0022034512443068

    Article  CAS  Google Scholar 

  33. Sarkar, N., Caicedo, R., Ritwik, P., Moiseyeva, R., Kawashima, I.: Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod 31(2), 97–100 (2005). https://doi.org/10.1097/01.DON.0000133155.04468.41

    Article  CAS  Google Scholar 

  34. Gandolfi, M.G., Taddei, P., Modena, E., Siboni, F., Prati, C.: Biointeractivity-related versus chemi/physisorption-related apatite precursor-forming ability of current root end filling materials. J Biomed Mater Res B Appl Biomater 101(7), 1107–1123 (2013). https://doi.org/10.1002/jbm.b.32920

    Article  CAS  Google Scholar 

  35. Aguiar, B.A., Frota, L.M., Taguatinga, D.T., Vivan, R.R., Camilleri, J., Duarte, M.A., de Vasconcelos, B.C.: Influence of ultrasonic agitation on bond strength, marginal adaptation, and tooth discoloration provided by three coronary barrier endodontic materials. Clin Oral Invest 23(11), 4113–4122 (2019)

    Article  Google Scholar 

  36. Wiesse, P., Silva-Sousa, Y., Pereira, R., Estrela, C., Domingues, L., Pécora, J., Sousa-Neto, M.: Effect of ultrasonic and sonic activation of root canal sealers on the push-out bond strength and interfacial adaptation to root canal dentine. Int Endod J 51(1), 102–111 (2018). https://doi.org/10.1111/iej.12794

    Article  CAS  Google Scholar 

  37. Camilleri, J., Sorrentino, F., Damidot, D.: Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mater 29(5), 580–593 (2013). https://doi.org/10.1016/j.dental.2013.03.007

    Article  CAS  Google Scholar 

  38. Han, L., Okiji, T.: Uptake of calcium and silicon released from calcium silicate–based endodontic materials into root canal dentine. Int Endod J 44(12), 1081–1087 (2011). https://doi.org/10.1111/j.1365-2591.2011.01924.x

    Article  CAS  Google Scholar 

  39. Duarte, M.A.H., de Oliveira Demarchi, A.C.C., Yamashita, J.C., Kuga, M.C., de Campos Fraga, S.: pH and calcium ion release of 2 root-end filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 95(3), 345–347 (2003). https://doi.org/10.1067/moe.2003.12

    Article  Google Scholar 

  40. Stefaneli Marques, J.H., Silva-Sousa, Y.T.C., Rached-Júnior, F.J.A., Macedo, L.M.D.d., Mazzi-Chaves, J.F., Camilleri, J., Sousa-Neto, M.D.: Push-out bond strength of different tricalcium silicate-based filling materials to root dentin. Braz. Oral Res. 32, e18 (2018). https://doi.org/10.1590/1807-3107bor-2018.vol32.0018

  41. Persson, C., Engqvist, H.: Premixed calcium silicate cement for endodontic applications: injectability, setting time and radiopacity. Biomatter 1(1), 76–80 (2011). https://doi.org/10.4161/biom.1.1.16735

    Article  Google Scholar 

  42. Yadlapati, M., Biguetti, C., Cavalla, F., Nieves, F., Bessey, C., Bohluli, P., Garlet, G.P., Letra, A., Fakhouri, W.D., Silva, R.M.: Characterization of a vascular endothelial growth factor–loaded bioresorbable delivery system for pulp regeneration. J Endod 43(1), 77–83 (2017). https://doi.org/10.1016/j.joen.2016.09.022

    Article  Google Scholar 

  43. Guo, Y.-J., Du, T.-F., Li, H.-B., Shen, Y., Mobuchon, C., Hieawy, A., Wang, Z.-J., Yang, Y., Ma, J., Haapasalo, M.: Physical properties and hydration behavior of a fast-setting bioceramic endodontic material. BMC Oral Health 16(1), 1–6 (2016)

    Article  Google Scholar 

  44. Alsubait, S.A.: Effect of sodium hypochlorite on push-out bond strength of four calcium silicate-based endodontic materials when used for repairing perforations on human dentin: an in vitro evaluation. J Contemp Dent Pract 18(4), 289–294 (2017). https://doi.org/10.5005/jp-journals-10024-2033

    Article  Google Scholar 

  45. Centenaro, C.F., Santini, M.F., da Rosa, R.A., do Nascimento, A.L., Kuga, M.C., Pereira, J.R., Só, M.V.R.: Effect of calcium hydroxide on the bond strength of two bioactive cements and SEM evaluation of failure patterns. Scanning 38(3), 240–244 (2016). https://doi.org/10.1002/sca.21266

    Article  CAS  Google Scholar 

  46. Gandolfi, M.G., Van Landuyt, K., Taddei, P., Modena, E., Van Meerbeek, B., Prati, C.: Environmental scanning electron microscopy connected with energy dispersive x-ray analysis and Raman techniques to study ProRoot mineral trioxide aggregate and calcium silicate cements in wet conditions and in real time. J Endod 36(5), 851–857 (2010). https://doi.org/10.1016/j.joen.2009.12.007

    Article  Google Scholar 

  47. Dammaschke, T., Gerth, H.U., Züchner, H., Schäfer, E.: Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dent Mater 21(8), 731–738 (2005). https://doi.org/10.1016/j.dental.2005.01.019

    Article  CAS  Google Scholar 

  48. Formosa, L., Mallia, B., Camilleri, J.: Mineral trioxide aggregate with anti-washout gel–Properties and microstructure. Dent Mater 29(3), 294–306 (2013). https://doi.org/10.1016/j.dental.2012.11.009

    Article  CAS  Google Scholar 

  49. Rashid, F., Shiba, H., Mizuno, N., Mouri, Y., Fujita, T., Shinohara, H., Ogawa, T., Kawaguchi, H., Kurihara, H.: The effect of extracellular calcium ion on gene expression of bone-related proteins in human pulp cells. J Endod 29(2), 104–107 (2003). https://doi.org/10.1097/00004770-200302000-00004

    Article  Google Scholar 

  50. Camilleri, J., Montesin, F.E., Brady, K., Sweeney, R., Curtis, R.V., Ford, T.R.P.: The constitution of mineral trioxide aggregate. Dent Mater 21(4), 297–303 (2005). https://doi.org/10.1016/j.dental.2004.05.010

    Article  CAS  Google Scholar 

  51. Asgary, S., Parirokh, M., Eghbal, M.J., Brink, F.: Chemical differences between white and gray mineral trioxide aggregate. J Endod 31(2), 101–103 (2005). https://doi.org/10.1097/01.DON.0000133156.85164.B2

    Article  Google Scholar 

  52. Felman, D., Parashos, P.: Coronal tooth discoloration and white mineral trioxide aggregate. J Endod 39(4), 484–487 (2013). https://doi.org/10.1016/j.joen.2012.11.053

    Article  Google Scholar 

  53. Jang, J.-H., Kang, M., Ahn, S., Kim, S., Kim, W., Kim, Y., Kim, E.: Tooth discoloration after the use of new pozzolan cement (Endocem) and mineral trioxide aggregate and the effects of internal bleaching. J Endod 39(12), 1598–1602 (2013). https://doi.org/10.1016/j.joen.2013.08.035

    Article  Google Scholar 

  54. Vallés, M., Mercadé, M., Duran-Sindreu, F., Bourdelande, J.L., Roig, M.: Influence of light and oxygen on the color stability of five calcium silicate–based materials. J Endod 39(4), 525–528 (2013). https://doi.org/10.1016/j.joen.2012.12.021

    Article  Google Scholar 

  55. Vallés, M., Mercadé, M., Duran-Sindreu, F., Bourdelande, J.L., Roig, M.: Color stability of white mineral trioxide aggregate. Clin Oral Invest 17(4), 1155–1159 (2013)

    Article  Google Scholar 

  56. Felippe, W., Felippe, M., Rocha, M.: The effect of mineral trioxide aggregate on the apexification and periapical healing of teeth with incomplete root formation. Int Endod J 39, 2–9 (2006). https://doi.org/10.1111/j.1365-2591.2005.01037.x

    Article  CAS  Google Scholar 

  57. Gancedo-Caravia, L., Garcia-Barbero, E.: Influence of humidity and setting time on the push-out strength of mineral trioxide aggregate obturations. J Endod 32(9), 894–896 (2006). https://doi.org/10.1016/j.joen.2006.03.004

    Article  Google Scholar 

  58. Tagger, M., Tagger, E., Tjan, A.H., Bakland, L.K.: Measurement of adhesion of endodontic sealers to dentin. J Endod 28(5), 351–354 (2002). https://doi.org/10.1097/00004770-200205000-00001

    Article  Google Scholar 

  59. Chen, H., Teixeira, F., Ritter, A., Levin, L., Trope, M.: The effect of intracanal anti-inflammatory medicaments on external root resorption of replanted dog teeth after extended extra-oral dry time. Dent Traumatol 24, 74–78 (2008). https://doi.org/10.1111/j.1600-9657.2006.00483.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Ünal.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İpek, İ., Ünal, M., Güner, A. et al. Push-out bond strength of Biodentine, MTA repair HP, and a new pre-mixed NeoPutty bioactive cement: scanning electron microscopy energy dispersive X-ray spectroscopy analysis. J Aust Ceram Soc 58, 171–179 (2022). https://doi.org/10.1007/s41779-021-00663-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00663-5

Keywords

Navigation