Skip to main content
Log in

Synthesis of titania-pillared layered tetratitanate and catalytic application in gas-phase Beckmann rearrangement

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this research work, titania-pillared layered tetratitanate (TiO2–H2Ti4O9) was prepared by a stepwise ions–exchange route, in which n-decylamine as a pre-swelling agent and tetrabutyl titanate as the titanium source for producing titanium oxide pillars. Compared with the other titanium alkoxides, tetrabutyl titanate is relatively cheap, and therefore the present pillaring work is more practicable. Powder XRD, FT–IR, and N2 adsorption–desorption techniques were employed to investigate the pillaring process and characterize the structure of the titania-pillared layered product. The result indicated that the concentration of titanium-pillaring solution obtained by mixing tetrabutyl titanate, acetic acid, and water affected significantly the pillaring behavior. The present titania-pillared layered product had a large surface area (SBET = 150.0 m2 g−1) and its layered structure was found to be thermally stable even if up to 723 K. Furthermore, catalytic performances of the titania-pillared layered tetratitanate (TiO2–H2Ti4O9) and TiO2–H2Ti4O9–supported B2O3 in gas-phase Beckmann rearrangement of cyclohexanone oxime were investigated, and the research findings highlighted the titania-pillared layered product as a potential supporter for preparing the supported B2O3 catalyst.

Graphical abstract

TiO2-pillared layered H2Ti4O9 with large surface area was prepared by using cheap titanium alkoxide as the titanium source for producing titanium-pillaring solution, and the product was demonstrated to be a potential support for preparing supported boria catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wen, K., Zhu, J., Chen, H., Ma, L., Liu, H., Zhu, R., Xi, Y., He, H.: Arrangement models of Keggin–Al30 and Keggin–Al13 in the interlayer of montmorillonite and the impacts of pillaring on surface acidity: a comparative study on catalytic oxidation of toluene. Langmuir 35, 382–390 (2019)

    Article  CAS  Google Scholar 

  2. Zhang, X., Tang, Y., Qu, S., Da, J., Hao, Z.: H2S–selective catalytic oxidation: catalysts and processes. ACS Catal 5, 1053–1067 (2015)

    Article  CAS  Google Scholar 

  3. Thomas, J.K.: Physical aspects of radiation–induced processes on SiO2, γ–Al2O3, zeolites, and clays. Chem Rev 105, 1683–1734 (2005)

    Article  CAS  Google Scholar 

  4. Guo, X., Hou, W., Yan, Q., Chen, Y.: Pillared layered transition metal oxides. Chin Sci Bull 48, 101–110 (2003)

    Article  CAS  Google Scholar 

  5. Wei, Y.-B., Guo, X.–J., Li, B.–J.: Exfoliation–co–flocculation fabrication of novel porous HTiNbO5/reduced graphene oxide nanocomposites and the photocatalytic performance. Microporous Mesoporous Mater 287, 144–151 (2019)

    Article  CAS  Google Scholar 

  6. Oshima, T., Yokoi, T., Eguchi, M., Maeda, K.: Synthesis and photocatalytic activity of K2CaNaNb3O10, a new Ruddlesden-Popper phase layered perovskite. Dalton Trans 46, 10594–10601 (2017)

    Article  CAS  Google Scholar 

  7. Bhuvanesh, N.S.P., Gopalakrishnan, J.: Synthesis of rutile–related oxides, LiMMoO6 (M = Nb, Ta) and their proton derivatives. Intercalation chemistry of novel bronsted acids, HMMoO6·H2O. Inorg Chem 34, 3760–3764 (1995)

    Article  CAS  Google Scholar 

  8. Kondo, J.N., Shibata, S., Ebina, Y., Domen, K., Tanaka, A.: Preparation of a SiO2–pillared K0.8Fe0.8Ti1.2O4 and IR study of N2 adsorption. J Phys Chem 99, 16043–16046 (1995)

    Article  CAS  Google Scholar 

  9. Yamanaka, S., Kunii, K., Xu, Z.L.: Preparation and adsorption properties of microporous manganese titanate pillared with silica. Chem Mater. 10, 1931–1936 (1998)

    Article  CAS  Google Scholar 

  10. Jang, J.S., Kim, H.G., Reddy, V.R., Bae, S.W., Ji, S.M., Lee, J.S.: Photocatalytic water splitting over iron oxide nanoparticles intercalated in HTiNb(Ta)O5 layered compounds. J Catal 231, 213–222 (2005)

    Article  CAS  Google Scholar 

  11. Wu, J., Cheng, Y., Lin, J., Huang, Y., Huang, M., Hao, S.: Fabrication and photocatalytic properties of HLaNb2O7/(Pt, Fe2O3) pillared nanomaterial. J Phys Chem C 111, 3624–3628 (2007)

    Article  CAS  Google Scholar 

  12. Tagusagawa, C., Takagaki, A., Takanabe, K., Ebitani, K., Hayashi, S., Domen, K.: Layered and nanosheet tantalum molybdate as strong solid acid catalysts. J Catal 270, 206–212 (2010)

    Article  CAS  Google Scholar 

  13. Xu, X.-Q., Zhao, L., Guo, X.–J., Wang, S.–F., Yu, T., Liu, S.–M., Liu, H.–H., Zhang, L.–R., Li, B.–J.: Intercalation of layered HMMoO6 (M = Ta, Nb) with oligomeric polyhydroxyacetato–Cr(III) species and propping up of HMMoO6 with chromium oxide as pillars. Polyhedron 97, 208–214 (2015)

    Article  CAS  Google Scholar 

  14. Rubel, M.H.K., Hossain, M.E., Parvez, M.S., Rahaman, M.M., Islam, M.S., Kumada, N., Kojima, S.: Low-temperature synthesis of potassium triniobate (KNb3O8) ceramic powder by a novel aqueous organic gel route. J Aust Ceram Soc 55, 759–764 (2019)

    Article  CAS  Google Scholar 

  15. Cheng, S., Wang, T.C.: Pillaring of layered titanates by polyoxo cations of aluminum. Inorg Chem 28, 1283–1289 (1989)

    Article  CAS  Google Scholar 

  16. Landis, M.E., Aufdembrink, B.A., Chu, P., Johnson, I.D., Kirker, G.W., Rubin, M.K.: Preparation of molecular sieves from dense layered metal oxides. J Am Chem Soc 113, 3189–3190 (1991)

    Article  CAS  Google Scholar 

  17. Anderson, M.W., Klinowski, J.: Layered titanate pillared with alumina. Inorg Chem 29, 3260–3263 (1990)

    Article  CAS  Google Scholar 

  18. Hou, W., Peng, B., Yan, Q., Fu., X., Shi, G.: The first silica–pillared layered niobate. J. Chem. Soc. Chem. Commun. 253–254 (1993)

  19. Matsuda, T., Udagawa, M., Kunou, I.: Modification of interlayer in lanthanum–niobium oxide and its catalytic reactions. J Catal 168, 26–34 (1997)

    Article  CAS  Google Scholar 

  20. Guo, C.–X., Hou, W.–H., Guo, M., Yan, Q.–J., Chen, Y.: Synthesis of a new solid acid: silica–pillared lanthanum niobate with a supergallery. Chem. Commun. 801–802 (1997)

  21. Shangguan, W., Inoue, K., Yoshida, A.: Synthesis of silica–pillared layered titanium niobium oxide. Chem. Commun. 779–780 (1998)

  22. Kooli, F., Sasaki, T., Watanabe, M.: Pillaring of a lepidocrocite–like titanate with aluminium oxide and characterization. Microporous Mesoporous Mater 28, 495–503 (1999)

    Article  CAS  Google Scholar 

  23. Kooli, F., Sasaki, T., Mizukami, F., Watanabe, M., Martin, C., Rives, V.: Characterization and acidic properties of silica pillared titanates. J Mater Chem 11, 841–845 (2001)

    Article  CAS  Google Scholar 

  24. Li, X., Zhong, Y., Li, Q., Wang, L.: Efficient photocatalytic degradation of rhodamine B over CdS sensitized SiO2–HNb3O8 under visible light. J Colloid Interf Sci 405, 226–232 (2013)

    Article  CAS  Google Scholar 

  25. Yanagisawa, M., Uchida, S., Yin, S., Sato, T.: Synthesis of titania–pillared hydrogen tetratitanate nanocomposites and control of slit width. Chem Mater 13, 174–178 (2001)

    Article  CAS  Google Scholar 

  26. Chen, Y., Hou, W., Guo, C., Yan, Q., Chen, Y.: Synthesis and characterization of porous chromia–pillared layered titanoniobate. J. Chem. Soc. Dalton. Trans. 359–362 (1997)

  27. Ma, Y., Suib, S.L., Ressler, T., Wong, J., Lovallo, M., Tsapatsis, M.: Synthesis of porous CrOx pillared octahedral layered manganese oxide materials. Chem Mater 11, 3545–3554 (1999)

    Article  CAS  Google Scholar 

  28. Yanagisawa, M., Sato, T.: Synthesis and photocatalytic properties of iron oxide pillared hydrogen tetratitanate by the hydrothermal crystallization method. Solid State Ionics 141–142, 575–581 (2001)

    Article  Google Scholar 

  29. Paek, S.-M., Jung, H., Lee, Y.–J., Park, M., Hwang, S.–J., Choy, J.–H.: Exfoliation and reassembling route to mesoporous titania nanohybrids. Chem Mater 18, 1134–1140 (2006)

    Article  CAS  Google Scholar 

  30. Guo, X., Hou, W., Bao, G., Yan, Q.: Synthesis and characterization of porous chromia–pillared layered lanthanum niobic acid. Solid State Ionics 177, 1293–1297 (2006)

    Article  CAS  Google Scholar 

  31. Kim, T.W., Hur, S.G., Hwang, S.-J., Park, H., Choi, W., Choy, J.–H.: Heterostructured visible–light–active photocatalyst of chromia–nanoparticle–layered titanate. Adv Funct Mater 17, 307–314 (2007)

    Article  CAS  Google Scholar 

  32. Fan, X., Lin, B., Liu, H., He, L., Chen, Y., Gao, B.: Remarkable promotion of photocatalytic hydrogen evolution from water on TiO2–pillared titanoniobate. Int J Hydrogen Energy 38, 832–839 (2013)

    Article  CAS  Google Scholar 

  33. Guo, X.-J., Wang, S.–F., Liu, S.–M., Zhao, L., Yu, T., Duan, W.–F., Xu, X.–Q.: Processing of chromium oxide–pillared layered HMWO6 (M = Nb, Ta) and their catalytic performances for photodegradation of rhodamine B. Inorg Chim Acta 421, 307–309 (2014)

    Article  CAS  Google Scholar 

  34. Wang, S.-F., Liu, S.–M., Li, B., Guo, X.–J.: Zirconia–pillaring in layered HNb3O8 and HNbMoO6. Chem Asian J 15, 3296–3303 (2020)

    Article  CAS  Google Scholar 

  35. Choy, J.-H., Lee, H.–C., Jung, H., Kim, H., Boo, H.: Exfoliation and restacking route to anatase–layered titanate nanohybrid with enhanced photocatalytic activity. Chem Mater 14, 2486–2491 (2002)

    Article  CAS  Google Scholar 

  36. Xu, B.–Q., Chen, S.–B., Zhang, X., Ying, S.–F., Zhu, Q.–M.: High temperature calcination for a highly efficient and regenerable B2O3/ZrO2 catalyst for the synthesis of ε–caprolactam. Chem. Commun. 1121–1122 (2000)

  37. Maheswari, R., Shanthi, K., Sivakumar, T., Narayanan, S.: Beckmann rearrangement over phosphotungstic acid/SiMCM–41 cyclohexanone oxime to ε-caprolactam. Appl Catal A Gen 248, 291–301 (2003)

    Article  CAS  Google Scholar 

  38. Kim, S.J., Jung, K.-D., Joo, O.–S., Kim, E.J., Kang, T.B.: Catalytic performance of metal oxide–loaded Ta–ilerite for vapor phase Beckmann rearrangement of cyclohexanone oxime. Appl Catal A Gen 266, 173–180 (2004)

    Article  CAS  Google Scholar 

  39. Mao, D., Lu, G., Chen, Q.: Vapor–phase Beckmann rearrangement of cyclohexanone oxime over B2O3/TiO2–ZrO2: the effect of catalyst calcination temperature and solvent. Appl Catal A Gen 279, 145–153 (2005)

    Article  CAS  Google Scholar 

  40. Heitmann, G.P., Dahlhoff, G., Niederer, J.P.M., Hölderich, W.F.: Active sites of a [B]–ZSM–5 zeolite catalyst for the Beckmann rearrangement of cyclohexanone oxime to caprolactam. J Catal 194, 122–129 (2000)

    Article  CAS  Google Scholar 

  41. Palkovits, R., Yang, C.-M., Olejnik, S., Schüth, F.: Active sites on SBA–15 in the Beckmann rearrangement of cyclohexanone oxime to ε–caprolactam. J Catal 243, 93–98 (2006)

    Article  CAS  Google Scholar 

  42. Thomas, B., Sugunan, S.: Rare–earth (Ce3+, La3+, Sm3+, and RE3+) exchanged Na–Y zeolites and K–10 clay as solid acid catalysts for the synthesis of benzoxazole via Beckmann rearrangement of salicylaldoxime. Microporous Mesoporous Mater 96, 55–64 (2006)

    Article  CAS  Google Scholar 

  43. Anilkumar, M., Hӧlderich, W.F.: Highly active and selective Nb modified MCM–41 catalysts for Beckmann rearrangement of cyclohexanone oxime to ɛ–caprolactam. J Catal 260, 17–29 (2008)

    Article  CAS  Google Scholar 

  44. Cesana, A., Palmery, S., Buzzoni, R., Spanò, G., Rivetti, F., Carnelli, L.: Silicalite–1 deactivation in vapour phase Beckmann rearrangement of cyclohexanone oxime to caprolactam. Catal Today 154, 264–270 (2010)

    Article  CAS  Google Scholar 

  45. Kim, J., Park, W., Ryoo, R.: Surfactant–directed zeolite nanosheets: a high–performance catalyst for gas–phase Beckmann rearrangement. ACS Catal 1, 337–341 (2011)

    Article  CAS  Google Scholar 

  46. Deng, Y.-Q., Yin, S.–F., Au, C.–T.: Preparation of nanosized silicalite–1 and its application in vapor–phase Beckmann rearrangement of cyclohexanone oxime. Ind Eng Chem Res 51, 9492–9499 (2012)

    Article  CAS  Google Scholar 

  47. Ge, C., Li, Z., Chen, G., Qin, Z., Li, X., Dou, T., Dong, M., Chen, J., Wang, J., Fan, W.: Kinetic study of vapor–phase Beckmann rearrangement of cyclohexanone oxime over silicalite–1. Chem Eng Sci 153, 246–254 (2016)

    Article  Google Scholar 

  48. Linares, M., Vargas, C., Garcia, A., Ochoa-Hernández, C., Cejka, J., Garcia-Munoz, R.A., Serrano, D.P.: Effect of hierarchical porosity in Beta zeolites on the Beckmann rearrangement of oximes. Catal Sci Technol 7, 181–190 (2017)

    Article  CAS  Google Scholar 

  49. Chu, Y., Li, G., Huang, L., Yi, X., Xia, H., Zheng, A., Deng, F.: External or internal surface of H-ZSM–5 zeolite, which is more effective for the Beckmann rearrangement reaction? Catal Sci Technol 7, 2512–2523 (2017)

    Article  CAS  Google Scholar 

  50. Zhang, X.-F., Zhang, K., Zhang, X., Feng, Y., Yao, J.: Controlled synthesis of hierarchical beta zeolite through design template to enhance gas–phase Beckmann rearrangement performance. Microporous Mesoporous Mater 272, 202–208 (2018)

    Article  CAS  Google Scholar 

  51. Guo, X., Hou, W., Ding, W., Fan, Y., Yan, Q., Chen, Y.: Synthesis of a novel super–microporous layered material and its catalytic application in the vapor–phase Beckmann rearrangement of cyclohexanone oxime. Microporous Mesoporous Mater 80, 269–274 (2005)

    Article  CAS  Google Scholar 

  52. Hou, W., Yan, Q., Peng, B., Fu, X.: Synthesis and characterization of alumina–pillared layered tetratitanates with different interlayer spacings. J Mater Chem 5, 109–114 (1995)

    Article  CAS  Google Scholar 

  53. Lambert, J.-F., Deng, Z., d’Espinose, J.–B., Fripiat, J.J.: The intercalation process of N–alkyl amines or ammoniums within the structure of KTiNbO5. J Colloid Interf Sci 132, 337–351 (1989)

    Article  CAS  Google Scholar 

  54. Sing, K.S.W.: Reporting physisorption data for gas/solid systems. Pure Appl Chem 54, 2201–2218 (1982)

    Article  Google Scholar 

  55. Sato, H.: Acidity control and catalysis of pentasil zeolites. Catal Rev – Sci Eng 39, 395–424 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Ji Guo.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, XJ. Synthesis of titania-pillared layered tetratitanate and catalytic application in gas-phase Beckmann rearrangement. J Aust Ceram Soc 57, 1371–1378 (2021). https://doi.org/10.1007/s41779-021-00641-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00641-x

Keywords

Navigation