Skip to main content
Log in

Investigating the microwave absorption properties of nanostructure composite particles of SrFe12O19/ZnFe2O4

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Ferromagnetic SrFe12O19/ZnFe2O4 nanostructure composite particles were synthesized by the co-precipitation of chloride salts utilizing the sodium hydroxide solution. The resulting precursors were heat treated from 900 to 1200 °C for 4 h. The microwave absorption properties of the nanostructure composite particles were studied by ferromagnetic resonance, transmit-line theories, and reflection loss (RL) plots. Based upon the theoretical results, the microwave absorption properties can be improved by increasing the saturation magnetization and the thickness to the optimum size and decreasing the coercivity. By increasing the thickness to the optimum size and raising the heat treatment temperature (HT), the microwave absorption properties were increased (according to theoretical results). For example, the RL (at the resonance frequency) was increased from − 5 to − 15 dB by increasing the temperature from 900 to 1200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huo, J., Wang, L., Yu, H.: Polymeric nanocomposites for electromagnetic wave absorption. Mater. Sci. 44, 3917–3927 (2009)

    Article  CAS  Google Scholar 

  2. Cullity, B.D., Graham, C. D.: Introduction to magnetic materials, 2ª. IEEE Press, Piscataway (2009)

    Google Scholar 

  3. Vishwanathan, B., Murthy, V.R.K.: Ferrite Materials Science and Technology. Narosa, New Delhi (1990)

    Google Scholar 

  4. Mehdipour, M., Fathi, M., Ariai, S., Shokrolahi, H.: Effect of silanization on magnetic and microwave absorption properties of nanostructure particles. J. Electron. Mater. 48, 5209–5217 (2019)

    Article  CAS  Google Scholar 

  5. Balcil, O., Polat, E., Kakenovel, N., Kocabas, C.: Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6(1), 6628 (2015)

    Article  Google Scholar 

  6. Cao, M.S., Song, W.L., Hou, Z.L., Yuan, J.: The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon. 48, 788–796 (2010)

    Article  CAS  Google Scholar 

  7. He, P., Cao, M.S., Cai, Y.Z., Shu, J.C., Cao, W.Q., Yuan, J.: Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding. Carbon. 157, 80–89 (2020)

    Article  CAS  Google Scholar 

  8. Gama, A.M., Rezende, M.C., Dantas, C.C.: Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials. J. Magn. Magn. Mater. 323, 2782–2785 (2011)

    Article  CAS  Google Scholar 

  9. Chen, L., Duan, Y., Liu, L., Guo, J., Liu, S.: Influence of SiO2 fillers on microwave absorption properties of carboney1 iron/carbon black double-layer coating. Mater. Des. 32, 570–574 (2011)

    Article  CAS  Google Scholar 

  10. Qing, Y., Zhou, W., Luo, F., Zhu, D.: Microwave electromagnetic properties of carboney1 iron particles and Si/C/N nano-powder filler epoxy-silicone coating. Physica B. 405, 1181–1184 (2010)

    Article  CAS  Google Scholar 

  11. Wang, L., He, F., Wan, Y.: Facile synthesis and electromagnetic wave absorption of magnetic fiber coated with Fe-Co alloy electroplating. J. Alloys Compd. 509, 4726–4730 (2011)

    Article  CAS  Google Scholar 

  12. Hsiang, H.-I., Yao, R.-Q.: Hexagonal ferrite powder synthesis using chemical coprecipitation. Mater. Chem. Phys. 104, 1–4 (2007)

    Article  CAS  Google Scholar 

  13. Ma, Z., Zhang, Y., Cao, C.T., Yuan, J., Liu, Q.F., Wang, J.B.: Attractive microwave absorption and the impedance match effect in zinc oxide and carboney1 iron composite. Physica B. 406, 4620–4624 (2011)

    Article  CAS  Google Scholar 

  14. Mehdipour, M., Fathi, M., Shokrolahi, H.: Microwave absorption properties of nanostructure composite particles based on SrFe12O19. Journal of Australian ceramic society. 56, 251–256 (2019)

    Google Scholar 

  15. Hessien, M.M., Rashad, M.M., El-Barawy,  K.: Controlling the composition and magnetic properties of strontium hexaferrite synthesized by coprecipitation method. J. Magn. Magn. Mater 320(3-4), 336–343 (2008)

  16. Rangolia, M.K., Chhanthbar, M.C., Tanna, A.R., Modi, K.B., Baldha, G.J., Josi, H.H.: Magnetic behavior of nano sized and coarse powder of Cd-Ni ferrites synthesized by wet-chemical route. Indian J. Pure Appl. Phys. 46, 66–64 (2008)

    Google Scholar 

  17. Zeng, H., Li, J., Liu, J.P., Zhong, L.W., Shouheng, S.: Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature. 420, 395–398 (2002)

    Article  CAS  Google Scholar 

  18. O’Handley, R.C.: Amorphous materials: Magnetism and disorder. In: Modern magnetic materials: principles and applications, Chap. 11, pp. 391–431. A Wiley Interscience Publication (Wiley), New York (2000)

  19. Liu, Z.W., et al.: Exchange interaction in rapidly solidified nanocrystalline RE–(Fe/Co)–B hard magnetic alloys. J. Appl. Phys. 105(7), 07A736 (2009)

    Article  Google Scholar 

  20. Cao, W.Q., Wang, X.X., Yuan, J., Wang, W.Z., Cao, M.S.: Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C. 3, 10017–10022 (2015)

    Article  CAS  Google Scholar 

  21. He, P., Wang, X.X., Cai, Y.Z., Shu, J.C., Zhao, Q.L., Yuan, J., Cao, M.S.: Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale. 11, 6080–6088 (2019)

    Article  CAS  Google Scholar 

  22. He, P., Cao, M.S., Shu, J.C., Cai, Y.Z., Wang, X.X., Zhao, Q.L., Yuan, J.: Atomic layer tailoring titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy. ACS Appl. Mater. Interfaces. 11, 12535–12543 (2019)

    Article  CAS  Google Scholar 

  23. Mehdipour, M., Shokrollahi, H.: Comparison microwave absorption properties of SrFe12O19, SrFe12O19/NiFe2O4 and NiFe2O4 particles. J. Appl. Phys. 114, 043906 (2014)

    Article  Google Scholar 

  24. Soohoo, R.F.: Theory and Application of Ferrites. Prentice-Hall, Upper Saddle River (1960)

    Google Scholar 

  25. Lax, B., Button, K.J.: Microwave Ferrites and Ferrimagnetics. McGraw-Hill, New York (1962)

    Google Scholar 

  26. Owens, F.J.: Ferromagnetic resonance of magnetic field oriented Fe3O4 nanoparticles in frozen ferrofluids. J. Phys. Chem. Solids. 64(11), 2289–2292 (2003)

  27. Gurevich, A.G., Melkov, G.A.: Magnetization Oscillation and Waves. CRC Press Inc, Boca Raton (1996)

    Google Scholar 

  28. Moradnia, M., Fathi, M., Mehdipour, M., Shokrollahi, H.: Analyzing the microwave absorption properties of BaFe12O19, Ba4MnZnFe36O60 and NiFe2O4 particles. J. Electron. Mater. 49, 5957–5963 (2020). https://doi.org/10.1007/s11664-020-08317-1

  29. Ramprasad, R., Zurcher, P., Petras, M., Miller, M.: Magnetic properties of metallic ferromagnetic nanoparticle composites. J. Appl. Phys. 96, 519 (2004)

    Article  CAS  Google Scholar 

  30. Hurben, M.J., Franklin, D.R., Patton, C.E.: Angle dependence of ferromagnetic resonance line width in easy-axis and easy-plane single crystal hexagonal ferrite disks. Am. Ins. Phys. S0021-8979(97), 01010–01014 (1997)

    Google Scholar 

  31. Fathi, M., Mehdipour, M., Shokrollahi, H.: Investigation of microwave absorption properties of multi-layer nanostructure BaFe12O19/epoxy composites. J. Mater. Sci. Mater. Electron. 31, 16918–16927 (2020). https://doi.org/10.1007/s10854-020-04247-0

  32. Bertorello, H.R., Bercoff, P.G., Oliva, M.I.: Model of interactions in nanometric particles of barium hexaferrite. J. Magn. Magn. Mater. 269, 122–130 (2004)

    Article  CAS  Google Scholar 

  33. Atxitia, U., Chubykalo-Fesenko, O.: Ultrafast magnetization dynamics rates within the Landau-Lifshitz-Bloch model. Phys. Rev. B. 84(14), 144414 (2011)

    Article  Google Scholar 

  34. Meng, X., Wan, Y., Li, Q., Wang, J., Luo, H.: The electrochemical preparation and microwave absorption properties of magnetic carbon fiberscoated with Fe3O4 films. Appl. Surf. Sci. 257, 10808–10814 (2011)

    Article  CAS  Google Scholar 

  35. Tyagi, S., Baskey, H.B., Agarwala, R.C., Agrwala, V., Shami, T.C.: Development of hard/soft ferrite nanocomposite for enhanced microwave absorption. Ceram. Int. 37, 2631–2641 (2011)

    Article  CAS  Google Scholar 

  36. Wang, L., He, F., Wan, Y.: Facile synthesis and electromagnetic wave absorption properties of magnetic carbon fiber coated with Fe-Co alloy by electroplating. Alloys Compd. 509, 4726–4730 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdad Fathi.

Ethics declarations

Conflict interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdipour, M., Fathi, M. & Shokrollahi, H. Investigating the microwave absorption properties of nanostructure composite particles of SrFe12O19/ZnFe2O4. J Aust Ceram Soc 57, 497–504 (2021). https://doi.org/10.1007/s41779-020-00536-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00536-3

Keywords

Navigation