Skip to main content
Log in

Synthesis and optical properties of La2O2CO3:Eu3+ hollow sphere phosphors by hydrothermal synthesis assisting with double-crucible carbonization method

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Lanthanum oxide, europium oxide, hydrochloric acid, ammonia water, and carbon powder were used as the starting materials. Detailed characterizations were attained by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry/differential thermal analysis (TG-DTA), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. The La(OH)3 precursor was synthesized by an hydrothermal synthesis method at 120 °C for 24 h, which was then converted into La2O2CO3 phase through calcining the precursor at 800 °C for 2 h in a carbon atmosphere. It was demonstrated that the as-obtained La2O2CO3 is a hollow sphere with uniform size about 200 nm. The formation mechanism of the La2O2CO3 phase has also been proposed. Photoluminescence analysis showed that the La2O2CO3:Eu3+ phosphors have the strongest red emissions at 614 nm under 281 nm ultraviolet (UV) light excitation, which correspond to the 5D0 → 7F2 transition of Eu3+ ions. The La2O2CO3:Eu3+ phosphors have double-exponential decay behavior and the calculated lifetime is determined to be t1 = 0.205 μs and t2 = 1.177 μs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sun, C., Xue, D.: Perspectives of multiscale rare earth crystal materials. CrystEngComm. 21, 1838–1852 (2019)

    Article  CAS  Google Scholar 

  2. Patel, K., Zhang, J., Ren, S.: Rare-earth-free high energy product manganese-based magnetic materials. Nanoscale. 10, 11701–11718 (2018)

    Article  CAS  Google Scholar 

  3. Kaczmarek, A., Van Hecke, K., Van Deun, R.: Nano- and micro-sized rare-earth carbonates and their use as precursors and sacrificial templates for the synthesis of new innovative materials. Chem Soc Rev. 44, 2032–2059 (2015)

    Article  CAS  Google Scholar 

  4. Sun, C., Carpenter, C., Pratx, G., Xing, L.: Facile synthesis of amine-functionalized Eu3+-doped La(OH)3 nanophosphors for bioimaging. Nanoscale Res Lett. 6, 24 (2011)

    Google Scholar 

  5. Hu, C., Liu, H., Dong, W., Zhang, Y., Bao, G., Lao, C., Wang, Z.: La(OH)3 and La2O3 nanobelts-synthesis and physical properties. Adv Mater. 19, 470–474 (2007)

    Article  CAS  Google Scholar 

  6. Liu, J., Wang, G., Lu, L., Guo, Y., Yang, L.: Facile shape-controlled synthesis of lanthanum oxide with different hierarchical micro/nanostructures for antibacterial activity based on phosphate removal. RSC Adv. 7, 40965–40972 (2017)

    Article  CAS  Google Scholar 

  7. Balda, R., Hakmeh, N., Barredo-Zuriarrain, M., Merdrignac-Conanec, O., García-Revilla, S., Arriandiaga, M., Fernández, J.: Influence of upconversion processes in the optically-induced inhomogeneous thermal behavior of erbium-doped lanthanum oxysulfide powders. Materials. 9, 353 (2016)

    Article  Google Scholar 

  8. Yamamoto, S., Tamura, S., Imanaka, N.: New type of potassium ion conducting solid based on lanthanum oxysulfate. J Alloys Compd. 418, 226–229 (2006)

    Article  CAS  Google Scholar 

  9. Wang, M., Jiang, G., Tang, Y., Shi, Y.: LaF3 and LaF3:Ln3+ (Ln = Eu, Tb) hierarchical microstructures: synthesis, characterization and photoluminescence. CrystEngComm. 15, 1001–1006 (2013)

    Article  CAS  Google Scholar 

  10. Rodrigues, E., Souza, E., Monteiro, J., Gaspar, R., Mazali, I., Sigoli, F.: Non-stabilized europium-doped lanthanum oxyfluoride and fluoride nanoparticles well dispersed in thin silica films. J Mater Chem. 22, 24109–24123 (2012)

    Article  CAS  Google Scholar 

  11. Kim, D., Jang, J., Ahn, S., Kim, S., Park, J.: Novel blue-emitting Eu2+-activated LaOCl:Eu materials. J Mater Chem C. 2, 2799–2805 (2014)

    Article  CAS  Google Scholar 

  12. Jeevanandam, P., Koltypin, Y., Palchik, O., Gedanken, A.: Synthesis of morphologically controlled lanthanum carbonate particles using ultrasound irradiation. J Mater Chem. 11, 869–873 (2011)

    Article  Google Scholar 

  13. Shahraki, S., Shiri, F., Beyzaei, H., Khosravi, F.: Synthesis, characterization, protein interaction and antibacterial activity of a lanthanum(III) complex [La(Trp)3(OH2)2] (Trp=tryptophan) as a new precursor for synthesis of La2O2CO3 nanoparticles. New J Chem. 41, 8413–8421 (2017)

    Article  CAS  Google Scholar 

  14. Mu, Q., Wang, Y.: Synthesis, characterization, shape-preserved transformation, and optical properties of La(OH)3, La2O2CO3, and La2O3 nanorods. J Alloys Compd. 509(2), 396–401 (2011)

    Article  CAS  Google Scholar 

  15. Pavunny, S., Scott, J., Katiyar, R.: Lanthanum gadolinium oxide: a new electronic device material for CMOS logic and memory devices. Materials. 7, 2669–2696 (2014)

    Article  CAS  Google Scholar 

  16. Masui, T., Koyabu, K., Tamura, S., Imanaka, N.: Synthesis of a new green-emitting phosphor based on lanthanum oxycarbonate (La2O2CO3-II). J Mater Sci. 40, 4121–4123 (2005)

    Article  CAS  Google Scholar 

  17. Manashirov, O., Zvereva, E., Lobanov, A.: A new lanthanum oxysulfide_based IR phosphor with a controlled luminescence decay time. Inorg Mater. 51(5), 466–472 (2015)

    Article  CAS  Google Scholar 

  18. Estruch Bosch, C., Copley, M., Eralp, T., Bilbe, E., Thybaut, J., Marin, G., Collier, P.: Tailoring the physical and catalytic properties of lanthanum oxycarbonate nanoparticles. Appl Catal A Gen. 536(25), 104–112 (2017)

    Article  CAS  Google Scholar 

  19. Li, X., Zhao, Z., Zeng, L., Zhao, J., Tian, H., Chen, S., Li, K., Sang, S., Gong, J.: On the role of Ce in CO2 adsorption and activation over lanthanum species. Chem Sci. 9, 3426–3437 (2018)

    Article  CAS  Google Scholar 

  20. Haenscha, A., Koziejb, D., Niederbergerb, M., Barsana, N., Weimara, U.: Rare earth oxycarbonates as a material class for chemoresistive CO2 gas sensors. Procedia Engineering. 5, 139–142 (2010)

    Article  Google Scholar 

  21. Zhao, D., Yang, Q., Han, Z., Zhou, J., Xu, S., Sun, F.: Biomolecule-assisted synthesis of rare earth hydroxycarbonates. Solid State Sci. 10(1), 31–39 (2008)

    Article  CAS  Google Scholar 

  22. Ding, D., Lu, W., Xiong, Y., Pan, X., Zhang, J., Ling, C., Du, Y., Xue, Q.: Facile synthesis of La2O2CO3 nanoparticle films and its CO2 sensing properties and mechanisms. Appl Surf Sci. 426, 725–733 (2017)

    Article  CAS  Google Scholar 

  23. Chen, G., Han, B., Deng, S., Wang, Y., Wang, Y.: Lanthanum dioxide carbonate La2O2CO3 nanorods as a sensing material for chemoresistive CO2 gas sensor. Electrochim Acta. 127(5), 355–361 (2014)

    Article  CAS  Google Scholar 

  24. Hou, Y., Han, W., Xia, W., Wan, H.: Structure sensitivity of La2O2CO3 catalysts in the oxidative coupling of methane. ACS Catal. 5(3), 1663–1674 (2015)

    Article  CAS  Google Scholar 

  25. Leidinger, P., Popescu, R., Gerthsen, D., Feldmann, C.: Nanoscale La(OH)3 hollow spheres and fine-tuning of its outer diameter and cavity size. Small. 6(17), 1886–1891 (2010)

    Article  CAS  Google Scholar 

  26. Zhao, D., Yang, Q., Han, Z., Sun, F., Tang, K., Yu, F.: Rare earth hydroxycarbonate materials with hierarchical structures: preparation and characterization, and catalytic activity of derived oxides. Solid State Sci. 10(8), 1028–1036 (2008)

    Article  CAS  Google Scholar 

  27. Niu, H., Min, Q., Tao, Z., Song, J., Mao, C., Zhang, S., Chen, Q.: One-pot facile synthesis and optical properties of porous La2O2CO3 hollow microspheres. J Alloys Compd. 509(3), 744–747 (2011)

    Article  CAS  Google Scholar 

  28. Hou, F., Zhao, H., Song, H., Chou, L., Zhao, J., Yang, J., Yan, L.: Insight into the structure evolution and the associated catalytic behavior of highly dispersed Pt and PtSn catalysts supported on La2O2CO3 nanorods. RSC Adv. 7(77), 48649–48661 (2017)

    Article  CAS  Google Scholar 

  29. Levan, T., Che, M., Tatibouet, J., Kermarec, M.: Infrared study of the formation and stability of La2O2CO3 during the oxidative coupling of methane on La2O3. J Catal. 142(1), 18–26 (1993)

    Article  CAS  Google Scholar 

  30. Wang, F., Ta, N., Li, Y., Shen, W.: La(OH)3 and La2O2CO3 nanorod catalysts for Claisen-Schmidt condensation. Chin J Catal. 35(3), 437–443 (2014)

    Article  Google Scholar 

  31. Li, G., Peng, C., Zhang, C., Xu, Z., Shang, M., Yang, D., Kang, X., Wang, W., Li, C., Cheng, Z., Lin, J.: Eu3+/Tb3+-doped La2O2CO3/La2O3 nano/microcrystals with multiform morphologies: facile synthesis, growth mechanism, and luminescence properties. Inorg Chem. 49(22), 10522–10535 (2010)

    Article  CAS  Google Scholar 

  32. Kaczmarek, A., Miermans, L., Deun, R.: Nano- and microsized Eu3+ and Tb3+-doped lanthanide hydroxycarbonates and oxycarbonates. The influence of glucose and fructose as stabilizing ligands. Dalton Trans. 42(13), 4639–4649 (2013)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Students’ Plaform for Innovation and Entrepreneurship Training Program (No.201810148015), the Nature Science Foundation of Liaoning Province of China (No. 20170540582), and the National Natural Science Foundation of China (No. 51701090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingbao Lian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., He, Y., Lian, J. et al. Synthesis and optical properties of La2O2CO3:Eu3+ hollow sphere phosphors by hydrothermal synthesis assisting with double-crucible carbonization method. J Aust Ceram Soc 56, 819–828 (2020). https://doi.org/10.1007/s41779-019-00403-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00403-w

Keywords

Navigation