Skip to main content
Log in

Optimization of mechanical alloying parameters for synthesis of nanostructure hexagonal BaFe12O19

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this study, barium hexaferrite nanostructure was synthesized by mechanical alloying method from a mixture of BaCO3 and Fe2O3. The effects of milling time and calcination temperature on synthesis of BaFe12O19 were investigated. X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM) were used to evaluation of structural, morphological, and magnetic properties of synthesized samples. The results showed that the amount of hematite phase increased by enhancing of the milling time from 5 to 25 h. However, the barium hexaferrite can be formed after 5 h milling and the calcination at 1100 °C. Also, the produced particles have almost spherical morphology and in some parts have polyhedral shape with an average size of about 100–150 nm. The saturation magnetization and the magnetic coercivity values were 56.48 emu/g and 5247.2 Oe, respectively. The area above the coercivity curve reveals that the sample has a hard magnetic behavior. In addition, the ratio of Mr/Ms was equal to 0.61 for the synthesized sample with the Fe/Ba molar ratio of 8. This amount is very close to the theoretical value for the random orientation of the single domain particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chavan, V.C., Shirsath, S.E., Mane, M.L., Kadam, R., More, S.S.: Transformation of hexagonal to mixed spinel crystal structure and magnetic properties of Co2+ substituted BaFe 12 O 19. J. Magn. Magn. Mater. 398, 32–37 (2016)

    Article  Google Scholar 

  2. Awawdeh, M., Bsoul, I., Mahmood, S.: Magnetic properties and Mössbauer spectroscopy on Ga, Al, and Cr substituted hexaferrites. J. Alloys Compd. 585, 465–473 (2014)

    Article  Google Scholar 

  3. Gutiérrez, J., Lasheras, A., Barandiarán, J., Gonçalves, R., Martins, P., Lanceros-Méndez, S.: Induced magnetoelectric effect driven by magnetization in BaFe 12 O 19-P (VDF-TrFE) composites. IEEE Trans. Magn. 51(11), 1–4 (2015)

    Article  Google Scholar 

  4. Remya, K., Prabhu, D., Amirthapandian, S., Viswanathan, C., Ponpandian, N.: Exchange spring magnetic behavior in BaFe 12 O 19/Fe 3 O 4 nanocomposites. J. Magn. Magn. Mater. 406, 233–238 (2016)

    Article  Google Scholar 

  5. Durmus, Z., Durmus, A., Kavas, H.: Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material. J. Mater. Sci. 50(3), 1201–1213 (2015)

    Article  Google Scholar 

  6. Ebrahimi, F., Yazdi, S.S.: Ferromagnetic resonance investigation of hexaferrite nanoparticles prepared by sol-gel auto-combustion method. J. Supercond. Nov. Magn. 1–7 (2016)

  7. Sen, S., Anand, P., Narjinary, M., Mursalin, S.M., Manna, R.: Ethanol sensing evaluation of sol–gel barium calcium ferrite. Ceram. Int. 42(11), 12581–12585 (2016)

    Article  Google Scholar 

  8. Wang, Z., Zhang, Y., Wang, Y., Li, Y., Luo, H., Li, J., Viehland, D.: Magnetoelectric assisted 180 magnetization switching for electric field addressable writing in magnetoresistive random-access memory. ACS Nano. 8(8), 7793–7800 (2014)

    Article  Google Scholar 

  9. Giurgiutiu, V., Lyshevski, S.E.: Micromechatronics: modeling, analysis, and design with MATLAB. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  10. Meng, Y., He, M., Zeng, Q., Jiao, D., Shukla, S., Ramanujan, R., Liu, Z.: Synthesis of barium ferrite ultrafine powders by a sol–gel combustion method using glycine gels. J. Alloys Compd. 583, 220–225 (2014)

    Article  Google Scholar 

  11. Mosleh, Z., Kameli, P., Ranjbar, M., Salamati, H.: Effect of annealing temperature on structural and magnetic properties of BaFe 12 O 19 hexaferrite nanoparticles. Ceram. Int. 40(5), 7279–7284 (2014)

    Article  Google Scholar 

  12. Cao, L., Zeng, Y., Ding, C., Li, R., Li, C., Zhang, C.: One-step synthesis of single phase micro-sized BaFe 12 O 19 hexaplates via a modified hydrothermal approach. Mater. Chem. Phys. 184, 241–249 (2016)

    Article  Google Scholar 

  13. Staneva, D., Koutzarova, T., Vertruyen, B., Vasileva-Tonkova, E., Grabchev, I.: Synthesis, structural characterization and antibacterial activity of cotton fabric modified with a hydrogel containing barium hexaferrite nanoparticles. J. Mol. Struct. 1127, 74–80 (2017)

    Article  Google Scholar 

  14. Rashad, M., Ibrahim, I.: Improvement of the magnetic properties of barium hexaferrite nanopowders using modified co-precipitation method. J. Magn. Magn. Mater. 323(16), 2158–2164 (2011)

    Article  Google Scholar 

  15. Chen, M., Fan, R., Zhang, Z., Yin, Y., Dong, L. Synthesis of uniform barium ferrite powders by coprecipitation method. In: Mater. Sci. Forum 898, 1649-1654 (2017)

  16. Gharibshahian, M., Mirzaee, O., Nourbakhsh, M.: Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified Pechini method. J. Magn. Magn. Mater. 425, 48–56 (2017)

    Article  Google Scholar 

  17. Yi, H.C., Moore, J.: Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted materials. J. Mater. Sci. 25(2), 1159–1168 (1990)

    Article  Google Scholar 

  18. Ertuş, E.B., Yildirim, S., Çelik, E.: Effect of La3+ and Ti4+ ions on the magnetic properties of barium Hexaferrite powders synthesized using sol-gel method. J Magn. 21(4), 496–502 (2016)

    Article  Google Scholar 

  19. Azis, R.a.S., Hashim, M., Zakaria, A., Hassan, J., Daud, N., Shahrani, N.M.M., Siang, P.C.: Magnetic properties and microstructures of cobalt substituted barium hexaferrites derived from steel waste product via mechanical alloying technique. In: Mater. Sci. Forum 846, 388-394 (2016)

  20. Kostishyn, V., Panina, L., Timofeev, А., Kozhitov, L., Kovalev, A., Zyuzin, A.: Dual ferroic properties of hexagonal ferrite ceramics BaFe 12 O 19 and SrFe 12 O 19. J. Magn. Magn. Mater. 400, 327–332 (2016)

    Article  Google Scholar 

  21. Habeeba, M., Balamurugan, S., Resmi, S., Chitra, R., Bhattacharya, S., Sahoo, N.: An efficient synthesis of nanocrystalline BaFe12O19 materials by modified co-precipitation method. In: AIP Conference Proceedings 2016, vol. 1, p. 050027. AIP Publishing

  22. Guo, D., Zhou, P., Hou, J., Luo, X., Wang, X., Deng, L.: Compositional control and millimeter-wave properties of micro-/nano-sized M-type barium hexaferrite synthesized by hydrothermal method. IEEE Trans. Magn. 51(11), 1–4 (2015)

    Google Scholar 

  23. Zhao, T., Ji, X., Jin, W., Xiong, C., Ma, W., Wang, C., Duan, S., Dang, A., Li, H., Li, T.: Synthesis and electromagnetic wave absorption property of amorphous carbon nanotube networks on a 3D graphene aerogel/BaFe 12 O 19 nanocomposite. J. Alloys Compd. 708, 115–122 (2017)

    Article  Google Scholar 

  24. Ali, I., Islam, M., Awan, M., Ahmad, M.: Effects of Ga–Cr substitution on structural and magnetic properties of hexaferrite (BaFe 12 O 19) synthesized by sol–gel auto-combustion route. J. Alloys Compd. 547, 118–125 (2013)

    Article  Google Scholar 

  25. Low, Z.H., Chen, S.K., Ismail, I., Tan, K.S., Liew, J.: Structural transformations of mechanically induced top-down approach BaFe12O19 nanoparticles synthesized from high crystallinity bulk materials. J. Magn. Magn. Mater. 429, 192–202 (2017)

    Article  Google Scholar 

  26. Stefan, I., Olei, A., Nicolicescu, C.: Research of the Fe2O3 powder granulation effect on BaFe12O19 firing temperature, Advanced engineering forum, pp. 29–36. Trans Tech Publ, Stafa-Zurich (2015)

    Google Scholar 

  27. Sharma, P., Thakur, A., Thakur, P., Chitra, R., Bhattacharya, S., Sahoo, N.: Study of electrical properties of W-type barium hexaferrite for high frequency application. In: AIP Conference Proceedings 2016, vol. 1, p. 050076. AIP Publishing

  28. Hodaei, A., Ataie, A., Mostafavi, E.: Intermediate milling energy optimization to enhance the characteristics of barium hexaferrite magnetic nanoparticles. J. Alloys Compd. 640, 162–168 (2015)

    Article  Google Scholar 

  29. Sadullahoğlu, G., Ertuğ, B., Gökçe, H., Altuncevahir, B., Öztürk, M., Topkaya, R., Akdoğan, N., Öveçoğlu, M., Addemir, O.: The effect of milling time and sintering temperature on crystallization of BaFe 12 O 19 phase and magnetic properties of Ba-Hexaferrite magnet. Acta Phys. Pol. A. 28(3), (2015)

  30. Shafie, M., Hashim, M., Ismail, I., Kanagesan, S., Fadzidah, M., Idza, I., Hajalilou, A., Sabbaghizadeh, R.: Magnetic M–H loops family characteristics in the microstructure evolution of BaFe 12 O 19. J. Mater. Sci. Mater. Electron. 25(9), 3787–3794 (2014)

    Article  Google Scholar 

  31. Öchsner, A., Altenbach, H.: Design and computation of modern engineering materials, vol. 54. Springer, (2014)

  32. Lü, L., Lai, M.O.: Mechanical alloying. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  33. Makhlouf, M.B., Bachaga, T., Sunol, J.J., Dammak, M., Khitouni, M.: Synthesis and characterization of nanocrystalline Al-20 at .% Cu powders produced by mechanical alloying. Metal. 6(7), 145 (2016)

    Article  Google Scholar 

  34. Suryanarayana, C.: Non-equilibrium processing of materials, vol. 2. Elsevier, (1999)

  35. Hajalilou, A., Hashim, M., Ebrahimi-Kahrizsangi, R., Kamari, H.M., Kanagesan, S.: Parametric optimization of NiFe 2 O 4 nanoparticles synthesized by mechanical alloying. Mater. Sci. Pol. 32(2), 281–291 (2014)

    Article  Google Scholar 

  36. Soman, V.V., Nanoti, V., Kulkarni, D., Soman, V.V.: Effect of substitution of Zn-Ti on magnetic and dielectric properties of BaFe12O19. Phys. Procedia. 54, 30–37 (2014)

    Article  Google Scholar 

  37. Sharma, M., Kashyap, S.C., Gupta, H.: Effect of Mg–Zr substitution and microwave processing on magnetic properties of barium hexaferrite. Phys. B Condens. Matter. 448, 24–28 (2014)

    Article  Google Scholar 

  38. Rahmat Doni, W., Manaf, A., Sardjono, P.: Physical characteristics and magnetic properties of barium hexaferrites (BaFe12O19) derived from mechanical alloying, Int. J. Basic Appl. Sci. 13(04), 65-68 (2013)

  39. Meng, P., Xiong, K., Ju, K., Li, S., Xu, G.: Wideband and enhanced microwave absorption performance of doped barium ferrite. J. Magn. Magn. Mater. 385, 407–411 (2015)

    Article  Google Scholar 

  40. Tehrani, M.K., Ghasemi, A., Alam, R.S.: Wideband electromagnetic wave absorber using doped barium hexaferrite in Ku-band. J. Alloys Compd. 509(33), 8398–8400 (2011)

    Article  Google Scholar 

  41. Hongfei, L., Jianjiang, W., Baocai, X., Guoshun, W., Yongshen, H., Haitao, G., Weimin, Y.: Effects of Mg or Sr doping on the intrinsic characteristics and absorption properties of micro-nano BaFe12O19 hollow multiphase ceramic microspheres. J. Magn. Magn. Mater. 374, 530–538 (2015)

    Article  Google Scholar 

  42. Vinnik, D., Zherebtsov, D., Mashkovtseva, L., Nemrava, S., Semisalova, A., Galimov, D., Gudkova, S., Chumanov, I., Isaenko, L., Niewa, R.: Growth, structural and magnetic characterization of Co-and Ni-substituted barium hexaferrite single crystals. J. Alloys Compd. 628, 480–484 (2015)

    Article  Google Scholar 

  43. Kishimoto, M., Kitahata, S., Amemiya, M.: Structural and magnetic properties of BaCoxFe12xO19 (x= 0.2, 0.4, 0.6, 1) nanoferrites synthesized via citrate sol-gel method. J. Appl. Phys. 61(10), (2011)

  44. Joughehdoust, S., Manafi, A.: Determination of microstructural parameters of nanocrystalline hydroxyapatite prepared by mechanical alloying method, AIP Conf. Proc. 1400, 486-491 (2011)

  45. Kiahosseini, S.R., Afshar, A., Larijani, M.M., Yousefpour, M.: Structural and corrosion characterization of hydroxyapatite/zirconium nitride-coated AZ91 magnesium alloy by ion beam sputtering. Appl. Surf. Sci. (2017)

  46. Kiahosseini, S.R., Afshar, A., Larijani, M.M., Yousefpour, M.: Adhesion, microstrain, and corrosion behavior of ZrN-coated AZ91 alloy as a function of temperature. J. Mater. Res. 28(19), 2709–2714 (2013)

    Article  Google Scholar 

  47. Williamson, G., Hall, W.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953)

    Article  Google Scholar 

  48. Kumari, S., Singh, D.K., Giri, P.: Strain anisotropy in freestanding germanium nanoparticles synthesized by ball milling. J. Nanosci. Nanotechnol. 9(9), 5231–5236 (2009)

    Article  Google Scholar 

  49. Dong, C., Wang, X., Zhou, P., Liu, T., Xie, J., Deng, L.: Microwave magnetic and absorption properties of M-type ferrite BaCoxTixFe12−2xO19 in the Ka band. J. Magn. Magn. Mater. 354, 340–344 (2014)

    Article  Google Scholar 

  50. Chawla, S., Mudsainiyan, R., Meena, S., Yusuf, S.: Sol–gel synthesis, structural and magnetic properties of nanoscale M-type barium hexaferrites BaCoxZrxFe (12−2x) O19. J. Magn. Magn. Mater. 350, 23–29 (2014)

    Article  Google Scholar 

  51. Duan, H.-y., Wang, J., Li, L., Aguilar, V., Zhao, G.-m.: Magnetic properties of barium ferrite nanoparticles: quantitative test of the Stoner–Wohlfarth theory for uniaxial single-domain magnetic particles. Phys. Lett. A. 377(38), 2659–2662 (2013)

    Article  Google Scholar 

  52. Xu, W.J., Duan, N.N., Wang, S.H., Guo, Y.G., Zhu, J.G.: Modeling the stress dependence of magnetic hysteresis based on Stoner-Wohlfarth theory. In: Applied Superconductivity and Electromagnetic Devices (ASEMD), 2015 IEEE International Conference on 2015, pp. 378–379. IEEE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahebali A. Manafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manafi, S.A., Joughehdoust, S., Kiahosseini, S.R. et al. Optimization of mechanical alloying parameters for synthesis of nanostructure hexagonal BaFe12O19. J Aust Ceram Soc 55, 371–379 (2019). https://doi.org/10.1007/s41779-018-0244-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-018-0244-x

Keywords

Navigation