Skip to main content
Log in

Effect of Mg doping on physical properties of Zn ferrite nanoparticles

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Effect of Mg doping on ZnFe2O4 samples was prepared by a sol-gel auto-combustion method. The obtained samples were sintered at different temperatures. Then, the sintered samples were characterized by powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and electrical properties. XRD results confirm the formation of cubic spinel-type structure with an average crystallite size decreased with Mg concentration from 37 to 17 nm. Lattice parameter decreases with increasing Mg concentration, due to the small ionic radius of the Mg2+ ion. The SEM images show the morphology of the samples as spherical shaped particles in agglomeration. The magnetization showed an increasing trend with increasing Mg concentration due to the rearrangement of cations at tetrahedral and octahedral sites. The ionic conductivity is increased with the increase of Mg concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gimenes, R., Baldissera, M.R., Silva, M.R.A., Silveira, C.A., Soares, D.A.W., Perazolli, L.A., Silva, M.R., Zaghete, M.A.: Structural and magnetic characterization of MnxZn1-xFe2O4 (x=0.2, 0.35, 0.65, 0.8, 1.0) ferrites obtained by the citrate precursor method. Ceram. Int. 38, 741–746 (2012)

    Article  Google Scholar 

  2. Sharifi, I., Shokrollahi, H., Amiri, S.: Ferrite-based magnetic nanofluids used in hyperthermia applications. J. Magn. Magn. Mater. 324, 903–915 (2012)

    Article  Google Scholar 

  3. Gupta, N., Verma, A., Kashyap, S.C., Dube, D.C.: Microstructural, dielectric and magnetic behavior of spin-deposited nanocrystalline nickel–zinc ferrite thin films for microwave applications. J. Magn. Magn. Mater. 308, 137–142 (2007)

    Article  Google Scholar 

  4. Hajarpour, S., Gheisari, K., Raouf, A.H.: Characterization of nanocrystalline Mg0.6Zn0.4Fe2O4 soft ferrites synthesized by glycine–nitrate combustion process. J. Magn. Magn. Mater. 329, 165–169 (2013)

    Article  Google Scholar 

  5. Azam, A., Jawad, A., Ahmed, A.S., Chaman, M., Naqvi, A.H.: Structural, optical and transport properties of Al3+ doped BiFeO3 nano-powder synthesized by solution combustion method. J. Alloys Compd. 509, 2909–2913 (2011)

    Article  Google Scholar 

  6. Jawad, A., Ahmed, A.S., Ashraf, S.S.Z., Chaman, M., Azam, A.: Exploring the dielectric behaviour of nano-structured Al3+ doped BiFeO3 ceramics synthesized by auto ignition process. J. Alloys Compd. 530, 63–70 (2012)

    Article  Google Scholar 

  7. Rahman, S., Nadeem, K., Rehman, M.A., Mumtaz, M., Naeem, S., Papst, I.L.: Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method. Ceram. Int. 39, 5235–5239 (2013)

    Article  Google Scholar 

  8. Sivakumar, M., Takami, T., Ikuta, H., Towata, A., Yasui, K., Tuziuti, T., Kozuka, T., Bhattacharya, D., Iida, Y.: Fabrication of zinc ferrite nanocrystals by sonochemical emulsification and evaporation:observation of magnetization and its relaxation at low temperature. J. Phys. Chem. B. 110, 15234–15243 (2006)

    Article  Google Scholar 

  9. Yang, J.M., Yen, F.S.: Evolution of intermediate phases in the synthesis of zinc ferrite nanopowders prepared by the tartrate precursor method. J Alloys Compd. 450, 387–394 (2008)

    Article  Google Scholar 

  10. Mahavir Singh, J.: A comparative study of the electrical and the magnetic properties and Mössbauer studies of normal and hot pressed MgxMn1−xFe2O4 ferrites. Magn. Magn. Mater. 299, 397–403 (2006)

    Article  Google Scholar 

  11. Singh, M., Sud, S.P.: Mg–Mn–Al ferrites for high frequency applications. Mod. Phys. Lett. B. 14, 531–537 (2000)

    Article  Google Scholar 

  12. Manjurul Haque, M., Huq, M., Hakim, M.A.: Densification, magnetic and dielectric behaviour of Cu-substituted Mg–Zn ferrites. Mater. Chem. Phys. 112, 580–586 (2008)

    Article  Google Scholar 

  13. Jordan, A., Wust, P., Scholz, R.: Scientific and clinical applications of magnetic carriers, pp. 569–595. Plenum Press, New York (1997)

    Book  Google Scholar 

  14. Robert, R., Greenberg, P.B., Elisabete, A., De Fernandes, N.: Neutron activation analysis: a primary method of measurement. Spectrochim. Acta Part B. 66, 193–241 (2011)

    Article  Google Scholar 

  15. Skołyszewska, B., Tokarz, W., Przybylski, K., Kakol, Z.: Preparation and magnetic properties of Mg Zn and MnZn ferrites. Physica C. 387, 290–294 (2003)

    Article  Google Scholar 

  16. Rezlescu, E., Sachelarie, L., Rezlescu, N.: Influence of copper ions on the structure and electromagnetic properties of Mg-Zn ferrite. J. Optoelectron. Adv. Mater. 8, 1019–1022 (2006)

    Google Scholar 

  17. Nadeem, K., Rahman, S., Mumtaz, M.: Effect of annealing on properties of Mg doped Zn-ferrite nanoparticles. Prog. Nat. Sci: Mater. Int. 25, 111–116 (2015)

    Article  Google Scholar 

  18. Rafiq, M.A., Khan, M.A., Asghar, M., Ilyas, S.Z., Shakir, I., Shahid, M., Warsi, M.F.: Influence of Co2+ on structural and electromagnetic properties of Mg–Zn nanocrystals synthesized via co-precipitation route. Ceram. Int. 41, 10501–10505 (2015)

    Article  Google Scholar 

  19. Manikandan, A., Vijaya, J.J., Sundararajan, M., Meganathan, C., Kennedy, L.J., Bououdina, M.: Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method. Super Lattices Microstruct. 64, 118–131 (2013)

    Article  Google Scholar 

  20. Kumar, A.G.S., Sarmash, T.S., Obulapathi, L., Rani, D.J., Rao, T.S., Asokan, K.: Structural, optical and electrical properties of heavy ion irradiated CdZnO thin films. Thin. Solid Films. 605, 102–107 (2016)

    Article  Google Scholar 

  21. Manikandan, A., Vijaya, J.J., Kennedy, L.J., Bououdina, M.: Structural, optical and magnetic properties of Zn1-xCuxFe2O4 nanoparticles prepared by microwave combustion method. J. Mol. Struct. 1035, 332–340 (2013)

    Article  Google Scholar 

  22. Salah, L.M., Moustafa, A.M., Farag, I.S.A.: Structural characteristics and electrical properties of copper doped manganese ferrite. Ceram. Int. 38, 5605–5611 (2012)

    Article  Google Scholar 

  23. Prabu, J.H., Johnson, I.: Greener cum chemical synthesis and characterization of Mg doped ZnS nanoparticles and their engineering band gap performance. Int. J. Engeg. Res. Appl. 5, 99–105 (2015)

    Google Scholar 

  24. Ateia, E., Ahmed, M.A., Ghouniem, R.M.: Electrical properties and initial permeability of CueMg ferrites. Solid State Sci. 31, 99–106 (2014)

    Article  Google Scholar 

  25. Li, S., Wu, Z., Li, W., Liu, Y., Zhuo, R., Yan, D., Jun, W., Yan, P.: One-pot synthesis of ZnS hollow spheres via a low temperature, template-free hydrothermal route. Cryst. Eng. Comm. 15, 1571–1577 (2013)

    Article  Google Scholar 

  26. Luo, F., Yan, C.H.: Anti-phase boundaries pinned abnormal positive magnetoresistance in Mg doped nanocrystalline zinc spinel ferrite. Chem. Phys. Lett. 452, 296–300 (2008)

    Article  Google Scholar 

  27. Alarifi, A., Deraz, N.M., Shaban, S.: Structural, morphological and magnetic properties of NiFe2O4 nano-particles. J. Alloy Compd. 486, 501–506 (2009)

    Article  Google Scholar 

  28. Deraz, N.M., Alarifi, A.: Fabrication and characterization of pure and doped Zn/Fe nanocomposites. Int. J. Electrochem. Sci. 7, 3809–3816 (2012)

    Google Scholar 

  29. Berchmans, L.J., Selvan, R.K., Kumar, P.N.S., Augustin, C.O.: Structural and electrical properties of Ni1−xMgxFe2O4 synthesized by citrate gel process. J. Magn. Magn. Mater. 279, 103–110 (2004)

    Article  Google Scholar 

  30. Kröger, F.A.: Chemistry of imperfect crystals. North-Holland, Amsterdam (1964)

    Google Scholar 

  31. Rani, D.J., Kumar, A.G.S., Rao, T.S.: Substrate temperature-dependent physical properties of nanocrystalline zirconium titanate thin films. J. Coat. Technol. Res. 14(5), 971–980 (2017)

    Article  Google Scholar 

  32. Ponpandian, N., Balaya, P., Narayanasamy, A.: Electrical conductivity and dielectric behaviour of nanocrystalline NiFe2O4 spinel. J. Phys. Condens. Matter. 14, 3221–3237 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siva Kumar Pendyala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pendyala, S.K., Thyagarajan, K., GuruSampath Kumar, A. et al. Effect of Mg doping on physical properties of Zn ferrite nanoparticles. J Aust Ceram Soc 54, 467–473 (2018). https://doi.org/10.1007/s41779-018-0173-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-018-0173-8

Keywords

Navigation