Skip to main content
Log in

Computer-aided design, finite element analysis and material-model optimisation of knee prosthesis

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In lieu of growing requirement of total knee arthroplasty (TKA), we represent an effective approach to establish material-model optimisation of TKA. In the present study, we have proposed different computer-aided designing models in combination of metals, ceramics and polymers of knee prosthesis, and it illustrates the best material-model for working and life-span. New class of design features consisting of perforated surface in ‘Without Stem but attached Base Connector (WSBC)’, ‘Without Stem Without Base Connector (WSWBC)’, ‘Double Stem Without Base Connector (DSWBC)’ and ‘Double Stem with Base Connector (DSBC)’ is proposed and performed finite element analysis (FEA) under static load of 80 KgF. Lowest deformation and minimum strain comprises in case of zirconia-toughened alumina (ZTA) femur and tibial prototypes in comparison to identical combination of Ti6Al4V, SS316, CoCrMo and ZrO2 prototypes. In consideration of design, dimension and material features, ZTA-based Double Stem with Base Connector (DSBC) femur, UHMWPE articulating insert and ZTA tibial combination eventually exhibits higher degree of performance under compressive mode of loading. Optimised combination of material-model promotes the functional ability and thus expected reduction of re-surgery for younger patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dye, S.F.: An evolutionary perspective of the knee. J. Bone Joint Surg. 69(7), 976–983 (1987)

    Article  Google Scholar 

  2. Alvarado, J., Maldonado, R., Marxuach, J., Otero, R.: Biomechanics of hip and knee prostheses, Applications of Engineering Mechanics in Medicine, GED – University of Puerto Rico Mayaguez, 1–20, (2003)

  3. D Kluesset. et al., A convenient approach for finite element analysis of orthopaedic implants in bone contact: modeling and experimental validation, Comput. Methods Prog. Biomed., 95, 23–30, 2009

  4. Samadhiya, S., Yadav, A., Rawal, B.R.: Biomechanical analysis of different knee prosthesis biomaterials using fem, IOSR-JMCE, 11(3), Ver. IV, 120–128, (2014)

  5. Mallesh, G., Sanjay, S.J.: Finite element modeling and analysis of prosthetic knee joint. Int. J. Emerg. Technol. Adv. Eng. 2(8), 2250–2459 (2012)

    Google Scholar 

  6. J Kircher, P Bergschmidt, R Bader et. al., The importance of wear couple for younger endoprosthesis patients, Orthop., 36: 337–346, 2007

  7. Wang, J., Stevens, R.: Zirconia-toughened alumina ceramics. J. Mater. Sci. 34, 3421–3440 (1989)

    Article  Google Scholar 

  8. Sarkar, D., Reddy, B.S., Basu, B.: Implementing statistical modelling approach towards development of ultrafine grained bioceramics: case of ZrO2-toughened Al2O3. J. Am. Ceram. Soc. (2017). https://doi.org/10.1111/jace.15255

  9. Sarkar, D., Sambireddy, B., Mandal, S., Basu, B.: Patient specific near-net shaped uniaxially pressed femoral head and acetablar socket, and Fabrication method thereof, European Patent, WO/2017/134614, 10th (2017)

  10. Smith & Nephew: Total system specification guide and product catalog, legion total knee system, USA, 02861v1 (2015)

  11. Pena, E., Calvo, B., Martínez, M.A., Doblare, M.: A three dimensional analysis of the combined behaviour of ligaments and menisci in the healthy human knee joint. J. Biomech. 39, 1686–1701 (2006)

    Article  Google Scholar 

  12. Zhao, J.H., Ma, S.F., Wei, X.Y.: Finite element analysis of femur stress under bending moment and compression load. IEEE. 978(1), 4244–4134 (2009)

    Google Scholar 

  13. Jacobs, J.J., Campbell, P.A., Konttinen, Y.T.: How has the biologic reaction to wear particles changed with newer bearing surfaces? J. Am. Acad. Orthop. Surg. 16(Suppl 1), S49–S55 (2008)

    Article  Google Scholar 

  14. Hallab, N.J., Anderson, S., Caicedo, M., Skipor, A., Campbell, P., Jacobs, J.J.: Immune responses correlate with serum-metal in metal-on-metal hip arthroplasty. J. Arthroplast. 19(Suppl 3), 88–93 (2004)

    Article  Google Scholar 

  15. Mohammed, M.T., Khan, Z.A., Siddiquee A.N.: Beta titanium alloys: the lowest elastic modulus for biomedical applications: a review, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 8(8) (2014)

  16. Aroukatos, P., Repanti, M., Repantis, T., Bravou, V., Korovessis, P.: Immunologic adverse reaction associated with low-carbide metal-on-metal bearings in total hip arthroplasty. Clin. Orthop. Relat. Res. 468, 2135–2142 (2010)

    Article  Google Scholar 

  17. G Bellefontaine, The corrosion of CoCrMo alloys for biomedical applications (Thesis), School of Metallurgy and Materials, University of Birmingham, (2010)

  18. Savarino, L., Baldini, N., Ciapetti, G., Pellacani, A., Giunti, A.: Is wear debris responsible for failure in alumina-on-alumina implants? Acta Orthop. 80, 162–167 (2009)

    Article  Google Scholar 

  19. Sarkar, D., Swain, S.K., Adhikari, S., Reddy, B.S., Maiti, H.S.: Synthesis, mechanical properties and bioactivity of nanostructured zirconia. Mater. Sci. Eng.: C. 33(6), 3413–3417 (2013)

    Article  Google Scholar 

  20. Nine, M.J., Choudhury, D., Hee, A.C., Mootanah, R., Osman, N.A.A.: Wear debris characterization and corresponding biological response: artificial hip and knee joints. Materials. 7, 980–1016 (2014)

    Article  Google Scholar 

  21. Lange, F.F.: Transformation toughening part 4: fabrication, fracture toughness and strength of Al2O3-ZrO2 composites. J. Mater. Sci. 17, 247–254 (1982)

    Article  Google Scholar 

  22. Krell, A., Blank, P.: On abrasive wear of zirconia-toughened aluminas. Wear. 124(3), 327–330 (1988)

    Article  Google Scholar 

  23. Singh, V.K., Reddy, B.R.: Synthesis and characterization of bioactive zirconia toughened alumina doped with HAp and fluoride compounds. Ceram. Int. 38, 5333–5340 (2012)

    Article  Google Scholar 

  24. Piconi, C., Maccauro, G.: Review: zirconia as a ceramic biomaterial. Biomaterials. 20, 1–25 (1999)

    Article  Google Scholar 

  25. Sarkar, D., Sambireddy, B., Mandal, S., Ravisankar, M., Basu, B.: Uniaxial compaction-based manufacturing strategy and 3D microstructural evaluation of near-net-shaped ZrO2-toughened Al2O3 acetabular socket. Adv. Eng. Mater. 18, 1634–1644 (2016)

    Article  Google Scholar 

  26. Willmann, G.: 20 years aluminium oxide ceramics for medical applications. Biomed. Tech. (Berl.) 39, 73–80 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasish Sarkar.

Electronic supplementary material

ESM 1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tumulu, S., Sarkar, D. Computer-aided design, finite element analysis and material-model optimisation of knee prosthesis. J Aust Ceram Soc 54, 429–438 (2018). https://doi.org/10.1007/s41779-017-0169-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-017-0169-9

Keywords

Navigation