Skip to main content
Log in

High alumina castables: a comparison among various sol-gel bonding systems

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

A comparison among various sol-gel bonding systems has been done for high alumina castable refractory. Four different sol systems, namely, alumina, boehmite, mullite, and spinel, have been synthesized and used individually as sole binder in high alumina castable system with particle size distribution coefficient of 0.23 as per Dinger and Funk model. The castable compositions were processed conventionally and properties were evaluated after heat treatment at different temperatures. These developed sol-containing compositions were also compared against commercially available silica sol-containing composition prepared under exactly similar conditions. Mullite sol-bonded composition showed higher cold strength, whereas spinel sol resulted in better hot properties. Improved thermal shock resistance against commercial sol binder was observed in spinel and mullite sol-containing compositions, which may be associated with the microcracking effect produced from the thermal expansion mismatch. The slag corrosion resistance was also observed better for the spinel sol-containing composition. The commercial silica sol-bonded compositions showed higher strength due to its higher solid content but resulted in inferior hot and corrosion properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Li, Z., Ye, G.: Bonding and recent progress of monolithic refractories. Interceram. 41(3), 169–173 (1992)

    Google Scholar 

  2. Parker, K.M., Sharp, J.H.: Refractory calcium aluminate cements. Trans Brit Ceram. 81, 35–42 (1982)

    Google Scholar 

  3. Banerjee, S.: Recent developments in monolithic refractories. Am Ceram Soc Bull. 77(10), 59–63 (1998)

    Google Scholar 

  4. Pilate, P., Tirlocq, J., Cambier, F.: Refractory castables: an overview. Ceramic Forum International. 84(6), 43–49 (2007)

    Google Scholar 

  5. Ishikawa, M.: Refractory castables. Taikabutsu. 51(4), 170–178 (1999)

    Google Scholar 

  6. Ismael, M.R., Salomao, R., Pandolfelli, V.C.: A combined binding system for refractory castables based on colloidal silica and hydratable alumina. Am Ceram Soc Bull. 86(9), 58–61 (2007)

    Google Scholar 

  7. De Sa, R.G. and Lee, W. E.: Nanotechnology for the refractories industry—a foresight perspective. The Refractories Engineer. 12–19 (2007).

  8. Garbers-Craig, A.M.: Presidential address: how cool are refractory materials? J South Afr Inst Min Metall. 108(9), 491–506 (2008)

    Google Scholar 

  9. Antonovic, V., Pundiene, I., Stonys, R., Cesniene, J., Keriene, J.: A review of the possible applications of nanotechnology in refractory concrete. J Civ Eng Manag. 16(4), 595–602 (2010)

    Article  Google Scholar 

  10. Braulio, M.A.L., Tontrup, C., Medeiros, J., Pandolfelli, V.C.: Colloidal alumina as a novel castable bonding system. Refractories World-Forum. 3(3), 135–141 (2011)

    Google Scholar 

  11. Anderson, M.: Better refractories through nanotechnology. Ceramic Industry Magazine. 155(10), 29–35 (2005)

    Google Scholar 

  12. Lipinski, T.R., Drygalska, E., Tontrup, C.: The influence of additions of nanostructured Al2O3 powder on the high temperature strength of high alumina refractories. In: Proceedings Of UNITECR-09. Pp.3, Salvador, Brazil, (2009).

  13. T.R. Lipinski, C. Tontrup, The use of nano-scaled alumina in alumina-based refractory materials. In: Proceedings Of UNITECR -07. Pp.391–393, Dresden, Germany, (2007).

  14. Braulio, M.A.L., Castro, J.F.R., Pagliosa, C., Bittencourt, L.R.M., Pandolfelli, V.C.: From macro to nano magnesia: designing the in situ spinel expansion. J Am Ceram Soc. 91(9), 3090–3093 (2008)

    Article  Google Scholar 

  15. Daspoddar, D., Das, S.K.R., Daspoddar, P.K.: Effect of silica sol of different routes on the properties of low cement castables. Bull Mater Sci. 26(2), 227–231 (2003)

    Article  Google Scholar 

  16. Ismael, M.R., Ramal Jr., F.T., Pandolfelli, V.C.: Silica sol as a binder agent for refractory castables. Cerâmica. 52, 82–87 (2006)

    Article  Google Scholar 

  17. Ismael, M.R., Valenzuela, F.A.O., Polito, L.A., Pandolfelli, V.C.: Thermo-mechanical properties of colloidal silica-containing castable. Cerâmica. 53, 314–318 (2007)

    Article  Google Scholar 

  18. Yaghoubi, H., Sarpoolaky, H., Golestanifard, F., Souri, A.: Influence of nano silica on properties and microstructure of high alumina ultra-low cement refractory castables. Iranian Journal Of Materials Science & Engineering. 9(2), 50–58 (2012)

    Google Scholar 

  19. Souri, A., Kashani Nia, F., Sarpoolaky, H.: Improving thermo-mechanical properties of tabular alumina castables via using nano structured colloidal silica. Nanomaterials: Applications And Properties (NAP-2011). 2(2), 254–259 (2011)

    Google Scholar 

  20. Ismael, M.R., Anjos, R.D., Salomao, R., Pandolfelli, V.C.: Colloidal silica as a nanostructured binder for refractory castables. Refractories Applications And News. 11(4), 16–20 (2006)

    Google Scholar 

  21. Das, S., Sarkar, R., Mondal, P., Mukherjee, S.: No cement high alumina self-flow castable. Am Ceram Soc Bull. 82(2), 55–59 (2003)

    Google Scholar 

  22. Sarkar, R., Mukherjee, S., Ghosh, A.: Gel bonded Al2O3 – SiC – C based blast furnace trough castable. Am Ceram Soc Bull. 85(5), 9101–9105 (2006)

    Google Scholar 

  23. Sarkar, R., Das, S.K.: Effect of distribution coefficient on gel bonded high alumina castable. IRMA Journal. 43(1), 31–36 (2010)

    Google Scholar 

  24. Sarkar, R., Satpathy, A.: High alumina self-flow castable with different binders. Refractories World Forum. 4(4), 98–102 (2012)

    Google Scholar 

  25. Sarkar, R., Kumar, A., Das, S.P., Prasad, B.: Silica sol bonded high alumina castable: effect of reduced sol. Refractories World Forum. 7(2), 83–87 (2015)

    Google Scholar 

  26. Sarkar, R., Srinivas, J.: Effect of cement and sol combined binders on high alumina refractory castables. Refractories World Forum. 8(4), 73–78 (2016)

    Google Scholar 

  27. Mukhopadhyay, T.K., Sarkar, R., Das, S.K., Ghosh, S., Ghatak, S.: Effect of synthetic mullite aggregate prepared by hydroxyl-hydro gel method on sol bonded clay based mullite castable. Am Ceram Soc Bull. 84(11), 9101–9106 (2005)

    Google Scholar 

  28. Das, S.K., Mandal, P.K., Sarkar, R.: Effect of synthetic aggregates on alumina castable. Am Ceram Soc Bull. 82(10), 9101–9106 (2003)

    Google Scholar 

  29. Amutha Rani, D., Gnanam, F.D.: Sol gel mullite as the self-bonding material for refractory applications. Ceram Int. 26(4), 347–350 (2000)

    Article  Google Scholar 

  30. Mandal, B., Sarkar, R., Daspoddar, P.K.: Effect of different mullite precursors on the properties of low cement high alumina castable. Ind Ceram. 31(3), 217–222 (2011)

    Google Scholar 

  31. Mukhopadhyaya, S., Daspoddar, P.K.: Effect of preformed and in-situ spinels on microstructure and properties of a low cement refractory castable. Ceram Int. 30(3), 369–380 (2004)

    Article  Google Scholar 

  32. Yilmaz, E., Yilmaz, S.: Investigation of properties of boehmitic sol coated graphite added alumina-low cement castables. J Ceram Process Res. 11(1), 56–60 (2010)

    Google Scholar 

  33. Mukhopadhyay, S., Dutta, S., Majumdar, M., Kundu, A., Das, S.K.: Synthesis and characterization of alumina bearing sol for application in refractory castables. Ind Ceram. 20(2), 88–92 (2000)

    Google Scholar 

  34. Mukhopadhyaya, S., Das, S.K.: Role of alumina sol on the physical properties of low cement castables. Transactions of the Indian Ceramic Society. 59(3), 68–74 (2000)

    Article  Google Scholar 

  35. Mukhopadhyay, S., Mahapatra, S., Mukherjee, P., Dasgupta, T., Das, S.K.: Effect of alumina sol in no-cement refractory castables. Transactions Of The Indian Ceramic Society. 60(2), 63–67 (2001)

    Article  Google Scholar 

  36. Mukhopadhyay, S., Ghosh, S., Mahapatra, M.K., Mazumder, R., Barick, P., Gupta, S., Chakraborty, S.: Easy-to-use mullite and spinel sols as bonding agents in a high-alumina based ultra low cement castable. Ceram Int. 28(7), 719–729 (2002)

    Article  Google Scholar 

  37. Ghosh, S., Majumdar, R., Sinhamahapatra, B.K., Nandy, R.N., Mukherjee, M., Mukhopadhyay, S.: Microstructures of refractory castables prepared with sol–gel additives. Ceram Int. 29(6), 671–677 (2003)

    Article  Google Scholar 

  38. Mukhopadhyay, S., Mahapatra, M.K., Mondal, P.K., Das, S.K.: Alumina and silica sols as binders in a typical ULC castable. Transactions of the Indian Ceramic Society. 62(2), 106–111 (2003)

    Article  Google Scholar 

  39. Cao, F., Long, S., Wu, X., Telle, R.: Properties of sol–gel bonding castables. Key Eng Mater. 336-338, 1484–1487 (2007)

    Article  Google Scholar 

  40. Han, K. R., Park, S. W., Kim, C. S. and Yang, J. O.: Unshaped refractory composition added with alumina sol binder. Int. Patent. WO 2011/115352 (2011).

  41. Han, K. R., Park, S. W., Kim, C. S. and Yang, J. O.: Alumina bonded unshaped refractory and manufacturing method thereof. Int. Patent WO 2011/115353 (2011).

  42. Braulio, M.A.L., Morbioli, G.G., Medeiros, J., Gallo, J.B., Pandolfelli, V.C.: Nano-bonded wide temperature range designed refractory castables. J Am Ceram Soc. 95(3), 1100–1104 (2012)

    Google Scholar 

  43. Singh, A.K., Sarkar, R.: Synthesis and characterization of alumina sol and its use as binder in no cement high-alumina refractory castables. Int J Appl Ceram Technol. 12(S3), E54–E60 (2015)

    Article  Google Scholar 

  44. Singh, A.K., Sarkar, R.: High alumina castables: effect of alumina sols and distribution coefficients. Trans Ind Ceram Soc. 74(4), 225–231 (2015)

    Article  Google Scholar 

  45. Singh, A.K., Sarkar, R.: Nano mullite bonded refractory castable composition for high temperature applications. Ceram Int. 42(11), 12937–12945 (2016)

    Article  Google Scholar 

  46. Singh, A.K., Sarkar, R.: Development of spinel sol bonded high pure alumina castable composition. Ceram Int. 42(15), 17410–17419 (2016)

    Article  Google Scholar 

  47. Dinger, D.R., Funk, J.E.: Particle packing III: discrete versus continuous particle sizes. Interceram. 41(5), 332–334 (1992)

    Google Scholar 

  48. Singh, A.K., Sarkar, R.: Effect of binders and distribution coefficient on the properties of high alumina castables. J Aust Ceram Soc. 50(2), 93–98 (2014)

    Google Scholar 

  49. Parr, C. and Wohrmeyer, C.: The advantages of calcium aluminate cement as a castable bonding system. In: Proceedings of St Louis Section Meeting of American Ceramic Society, USA (2006).

  50. Braulio, M.A.L., Rigaud, M., Buhr, A., Parr, C., Pandolfelli, V.C.: Spinel-containing alumina-based refractory castables. Ceram Int. 37(6), 1705–1724 (2011)

    Article  Google Scholar 

  51. Zhang, S., Lee, W. E.: Spinel-containing refractories. In: Refractories Handbook, Pp.215–258, C.A. Schacht, Marcel Dekker, Monticello (2004).

  52. Chandradass, J., Bae, D.S., Kim, K.H.: Synthesis of calcium hexa-aluminate (Caal12o19) via reverse micelle process. J Non-Cryst Solids. 355(48–49), 2429–2432 (2009)

    Article  Google Scholar 

  53. Nagaoka, T., Tsugoshi, T., Hotta, Y., Yasuoka, M., Watari, K.: Forming and sintering of porous calcium hexa-aluminate ceramics with hydraulic alumina. J Mater Sci. 41(22), 7401–7405 (2006)

    Article  Google Scholar 

  54. Mukhopadhyay, S., Pal, T.K., DasPoddar, P.K.: Improvement of corrosion resistance of spinel-bonded castables to converter slag. Ceram Int. 35(1), 373–380 (2009)

    Article  Google Scholar 

  55. Lee, W. E.: Theory experiment and practice of slag attack of refractories. Tehran International Conference on Refractories, 4–6 May (2004).

Download references

Acknowledgments

The authors thankfully acknowledge Mr. S. Mukherjee and Mr. S. Chatterjee for their support regarding raw materials and the staff of the Department of Ceramic Engineering, NIT Rourkela for their support and help regarding different experimentations of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Sarkar, R. High alumina castables: a comparison among various sol-gel bonding systems. J Aust Ceram Soc 53, 553–567 (2017). https://doi.org/10.1007/s41779-017-0067-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-017-0067-1

Keywords

Navigation