Skip to main content
Log in

Effect of glass on magnetic properties of microwave-processed MgCuZn nano ferrites

  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Lately ferrites find applications as multilayer chip inductor (MLCI) cores. During the MLCI fabrication, the core has to be sintered with an internal electrode like silver. The sintering temperature of ferrites can be reduced in many ways. In the present study, two techniques are simultaneously used for the purpose vice doping of glass and choosing to sinter using microwaves. Undoped and lead borosilicate glass-doped MgCuZn ferrites with generic formula Mg0.5Cu x Zn0.5−x Fe2O4 at x = 0.05–0.3 were synthesized by conventional solid state reaction route and were characterized for structural, surface, and magnetic properties. From X-ray diffraction studies, it was found that all the undoped and glass-doped samples were single-phase spinel structure. Glass-doped MgCuZn ferrite samples exhibited lower permeability than that of undoped MgCuZn ferrites. However, a flat frequency response was observed in the glass-doped Mg0.5CuxZn0.5-xFe2O4 samples at x = 0.1 and 0.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Murthy, S.R.: Low temperature sintering of NiCuZn ferrite and its electrical, magnetic and elastic properties. J. Mater. Sci. Lett. 208, 657 (2002)

    Article  Google Scholar 

  2. Yue, Z., Li, L., Zhou, J., Zhang, H., Gui, Z.: Synthesis of nanocrystalline NiCuZn ferrite powders by sol-gel auto-combustion method. J. Magn. Magn. Mater. 208, 55 (2000)

    Article  Google Scholar 

  3. Koh, J.G., Yu, C.I.: Experimental study on physical properties of Cu-Zn-Mg ferrite according to composition and sintering temperature. New Phys: Korean Phys Soc. 247, 359 (1984)

  4. Bhosale, D.N., Choudhari, N.D., Sawanth, S.R., Bakare, P.P.: Initial permeability studies on high density Cu-Mg-Zn ferrites. J. Magn. Magn. Mater. 173, 51 (1997)

    Article  Google Scholar 

  5. Rezlescu, N., Rezlescu, E., Popa, P.D., Craus, M.L., Rezlescu, L.: Copper ions influence on the physical properties of a magnesium-zinc ferrite. J. Magn. Magn. Mater. 182, 199 (1998)

    Article  Google Scholar 

  6. Sachlarie, L., Rezlescu, E., Rezlescu, N.: Influence of PbO on some properties of MgCuZn ferrites. Phys. Stat. Solidi. a. 179 (R1), (2000)

  7. Rezlescu, N., Sachlarie, L., Rezlescu, E., Pope, P.D.: Influence of PbO and Ta2O5 on some physical properties of MgCuZn ferrites. Cryst. Res. Tech. 36, 157 (2001)

  8. Qi, X., Zhou, J., Yue, Z., Gui, Z., Li, L.: Effect of Mn stubstitution on the magnetic properties of MgCuZn ferrites. J. Magn. Magn. Mater. 251, 316 (2002)

    Article  Google Scholar 

  9. Varalaxmi, N., Rammanohar Reddy, N., Ramana, M.V., Rajagopal, E., Murthy, V.R.K., Siva Kumar, K.V.: Stress sensitivity of inductance in NiMgCuZn ferrites and development of a stress insensitive ferrite composition for microinductors. J. Mater. Sci. Mater. Electron. 19, 399 (2008)

    Article  Google Scholar 

  10. Penchal Reddy, M., Madhuri, W., Venkata Ramana, M., Ramamanohar Reddy, N., Siva Kumar, K.V., Murthy, V.R.K., Siva Kumar Reddy, K., Ramakrishna Reddy, R.: Effect of sintering temperature on structural and magnetic properties of NiCuZn and MgCuZn ferrites. J. Magn. Magn. Mater. 322, 2819 (2010)

    Article  Google Scholar 

  11. Su, H., Zhang, H., Tang, X., Lu, B., Zhong, Z.: Study on low-tempreature sintered NICuZn spnel ferrites. J. Alloy. Compd. 475, 683 (2009)

    Article  Google Scholar 

  12. Golonka, L.J.: Technology and applications of low temperature cofired ceramic (LTCC) based sensors and microsystems. Bull Polish Acad Sci and Tech Sci. 54, 221 (2006)

    Google Scholar 

  13. Zhou, J.: Towards rational design of low-temperature co-fired ceramics (LTCC) materials. J Advanced Ceramics. 1, 89 (2012)

    Article  Google Scholar 

  14. Guillaud, C.: The properties of manganese-zinc ferrites and the physical processes governing them. Proc. IEE. B104, 165 (1957)

  15. Standley, K.J.: Oxide magnetic materials, p. 98. Claredon Press, Oxford (1972)

    Google Scholar 

  16. Madhuri, W., Penchal Reddy, M., Rammanohar Reddy, N., Siva Kumar, K.V., Murthy, V.R.K.: Comparison of initial permeability of MgCuZn ferrites sintered by both conventional and microwave methods. J. Phys. D. Appl. Phys. 42, 165007 (2009)

    Article  Google Scholar 

  17. Chandra Babu Naidu, K., Sofi Sarmash, T., Maddaiah, M., Sreenivasula Reddy, P., Jhansi Rani, D., Subbarao, T.: Synthesis and characterization of MgO-doped SrTiO3 ceramics. J. Aust. Ceram. Soc. 52, 95–101 (2016)

    Google Scholar 

  18. Madhuri, W., Penchal Reddy, M., Gon Kim, I., Rama Manohar Reddy, N., Siva Kumar, K.V., Murthy, V.R.K.: Transport properties of microwave sintered pure and glass added MgCuZn ferrites. Mater. Sci. Engg. B. 178, 843 (2013)

    Article  Google Scholar 

  19. Chandra Babu Naidu, K., Madhuri, W.: Microwave assisted solid state reaction method: investigations on electrical and magnetic properties NiMgZn ferrites. Mater. Chem. Phys. 181, 432–443 (2016)

    Article  Google Scholar 

  20. Rezlescu, E., Rezlescu, N., Popa, P.D., Rezlescu, L., Pasnicu, C., Craus, M.L.: Effect of copper oxide content on intrinsic properties of MgCuZn ferrite. Mater. Res. Bull. 33, 915 (1998)

    Article  Google Scholar 

  21. Globus, A., Duplex, P.: Effective anisotropy in polycrystalline materials. Separation of components. J. Appl. Phys. (USA). 39, 727 (1968)

    Article  Google Scholar 

  22. Kakatkar, S.V., Kakatkar, S.S., PAtil, R.S., Sankpal, A.M., Chaudhari, N.D., Maskar, P.K., Suryawanshi, S.S., Sawant, S.R.: Effect of sintering conditions and Al3+ addition on wall permeability in Ni1-xZnxAltFe2-tO4 ferrites. Mater. Chem. Phys. 46, 96 (1996)

    Article  Google Scholar 

  23. Globous, A.: Cardiff Conf. USA (1975)

  24. Globus, A., Duplex, P., Guyot, M.: Determaination of initial magnetization curve from crystallites size and effective anisotropy field. IEEE. Trans. Magn. 7, 617 (1971)

    Article  Google Scholar 

  25. Khan, Z.H., Mahbubur Rahman, M., Sikder, S.S., Hakim, M.A., Saha, D.K.: Complex permeability of Fe-deficient Ni-Cu-Zn ferrites. J. Alloys. Compds. 548, 208 (2013)

  26. Bhosale, D.N., Sawant, S.R., Gangal, S.A., Mahajan, R.R., Bakare, P.P.: Synthiseis of copper-magnesium-zinc ferrites and correlation of magnetic properties with microstructure. Mater. Sci. Engg. B. 65, 79 (1999)

    Article  Google Scholar 

  27. Rado, G.T., Terris, A.: Magnetization processes in ferrites. Phys. Rev. 83, 177 (1951)

Download references

Acknowledgements

The authors are thankful to Sri Krishnadevaraya University, Anantapur, for providing the experimental facilities. This work was supported by the financial assistance provided by the Defence Research and Development Organization (DRDO), New Delhi, India, by the grant No ERIP/ER/0303437/M/01/761. The corresponding author conveys her special thanks to Prof. S. Kaleemulla for final refinement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Madhuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhuri, W., Penchal Reddy, M., Ramamanohar Reddy, N. et al. Effect of glass on magnetic properties of microwave-processed MgCuZn nano ferrites. J Aust Ceram Soc 53, 67–73 (2017). https://doi.org/10.1007/s41779-016-0010-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-016-0010-x

Keywords

Navigation