Skip to main content
Log in

Time-varying spectral analysis: theory and applications

  • Article
  • Published:
Indian Economic Review Aims and scope Submit manuscript

Abstract

Non-stationary time series are a frequently observed phenomenon in several applied fields, particularly physics, engineering and economics. The conventional way of analysing such series has been via stationarity inducing filters. This can interfere with the intrinsic features of the series and induce distortions in the spectrum. To avert this possibility, it might be a better alternative to proceed directly with the series via the so-called time-varying spectrum. This article outlines the circumstances under which such an approach is possible, drawing attention to the practical applicability of these methods. Several methods are discussed and their relative advantages and drawbacks delineated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. These and related concepts are discussed at length in Nachane (2006), chapters 3 and 4.

  2. The concept of Lebesgue measure can be found in any standard text on real analysis such as e.g. Royden and Fitzpatrick (2010). A measure υ is said to be absolutely continuous w.r.t. a measure μ if for every measurable set A, with μ(A) = 0, we have υ(A) = 0.

  3. Although the evolutionary spectrum defined by (51) is not invariant to the choice of the family ℑ, the integral \(\int_{ - \infty }^{\infty } {{\text{d}}H_{t} (\omega )\, = \,\text{var} [X(t)]}\) is independent of this choice.

  4. The problem of resolution in spectral analysis refers to the ability of estimators to distinguish fine structure in the spectrum. The resolution of an estimator can be improved by decreasing its bandwidth [see Koopmans (1995), p. 303–306].

  5. Reducing bandwidth (to improve resolution), however, increases the variance of an estimator—the so-called Grenander Uncertainty Principle (see Grenander (1958) and Priestley (1981), p. 527).

  6. The term sufficiently apart means that either (i) \(\left| {\lambda_{1} \pm \lambda_{2} } \right| > > {\text{bandwidth}}\;{\text{of}} \left| {{\Gamma}({\lambda})} \right|^{2}\) or (ii) \(\left| {t_{1} - t_{2} } \right| > > {\text{width}}\;{\text{of}} \left\{ {w_{q} } \right\}.\).

  7. Cumulants are defined and discussed in Brillinger (1975), p. 19–21.

  8. The notion of weak dependence is discussed in Billingsley (1968), p. 363–367.

  9. The notions of small o and big O are explained in Nachane (2006), p. 131.

  10. The suggested test has reasonable size properties and the power of the test increases substantially with sample size. Other properties of the test are noted in Breitung and Candelon (2006).

  11. The degrees of freedom are however adjusted to F[2, N − 3p].

  12. The term BRICS is now a common acronym for the following group of countries—Brazil, Russia, India, China and S. Africa.

References

  • Akin, C., & Kose, M. A. (2008). Changing nature of north-south linkages: Stylized facts and explanations. Journal of Asian Economics, 19(1), 1–28.

    Article  Google Scholar 

  • Bentkus, R. J., & Zurbenko, I. G. (1976). Asymptotic normality of spectral estimates Dokaldi Akademic Nauk. SSSR, 229(1), 11–14. (in Russian).

    Google Scholar 

  • Billingsley, P. (1968). Probability and measure. New York: Wiley.

    Google Scholar 

  • Bradley, R. C. (2005). Basic properties of strong mixing conditions: A survey and some open questions. Probability Surveys, 2, 107–144.

    Article  Google Scholar 

  • Breitung, J., & Candelon, B. (2006). Testing for short- and long-run causality: A frequency domain approach. Journal of Econometrics, 12, 363–378.

    Article  Google Scholar 

  • Brillinger, D. R. (1975). Time series: Data analysis and theory, holt. New York: Rinehart & Winston.

    Google Scholar 

  • Chan, W. Y. T., & Tong, H. (1975). A simulation study of the estimation of evolutionary spectral functions. Applied Statistics, 24, 333–341.

    Article  Google Scholar 

  • Chen, W., Khetarnavaz, N., & Spencer, T. W. (1993). An efficient algorithm for time-varying Fourier transform. Proc IEEE, 41, 2488–2490.

    Google Scholar 

  • Cramer, H. (1961). On some classes of nonstationary stochastic processes. In Proceedings of the 4th Berkeley Symposium, vol. 2, p. 57–78

  • Dolado, J., & Lutkepohl, H. (1996). Making Wald tests work for cointegrated VAR systems. Econometric Reviews, 15, 369–386.

    Article  Google Scholar 

  • Doukhan, P. (1994). Mixing: Properties and examples. Lecture notes in statistics (Vol. 85). Berlin: Springer.

    Google Scholar 

  • Doukhan, P., & Louhichi, S. (1999). A new weak dependence condition and applications to moment inequalities. Stochastic Processes and their Applications, 84(2), 313–342.

    Article  Google Scholar 

  • Falk, M. (1984). On the convergence of spectral densities of arrays of weakly stationary processes. Annals of Probability, 12, 918–921.

    Article  Google Scholar 

  • Fidrmuc, J., Korhonen, I., & Btorov, I. (2008). China in the World Economy: Dynamic Correlation Analysis of Business Cycles, BOFIT Discussion Paper No. 7/2008, Bank of Finland

  • Fishman, G. S. (1969). Spectral methods in econometrics. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • Geweke, J. (1982). Measurement of linear dependence and feedback between multiple time series. Journal of the American Statistical Association, 77(378), 304–313.

    Article  Google Scholar 

  • Geweke, J. (1984). Measures of conditional linear dependence and feedback between time series. Journal of the American Statistical Association, 79(388), 907–915.

    Article  Google Scholar 

  • Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 251–276.

    Article  Google Scholar 

  • Grenander, U. (1958). Resolvability and reliability in spectral analysis. Journal of Royal Statistical Society Series B, 20, 152–157.

    Google Scholar 

  • Grenander, U., & Rosenblatt, M. (1957). Statistical analysis of stationary time series. New York: Wiley.

    Book  Google Scholar 

  • Hannan, E. J. (1967). Time series analysis, science paperbacks. London: Chapman & Hall.

    Google Scholar 

  • Herbst, L. J. (1964). Spectral analysis in the presence of variance fluctuations. Journal of the Royal Statistical Society Series B, 2, 354–360.

    Google Scholar 

  • Hlawatsch, F., & Boudreaux-Bartels, G. F. (1992). Linear and quadratic time–frequency signal representations. IEEE Signal Processing Magazine, 9(2), 21–67.

    Article  Google Scholar 

  • Ibragimov, I. A. (1962). Stationary Gaussian sequences that satisfy the strong mixing conditions Dokaldi Akademic Nauk. SSSR, 147(6), 1282–1284.

    Google Scholar 

  • Ibragimov, I. A., & Linnic, Y. C. (1971). Independent and stationary sequences of random variables. Groningen: Volters-Nordoff.

    Google Scholar 

  • Iosifescu, M. (1977). Limit theorems for φ-mixing sequences: A survey. In Proceedings of the fifth conference on probability theory, Brasov (Romania), Publishing House of the Romanian Academy

  • Ivanov, A. V., & Leonenko, N. N. (1989). Statistical analysis of random fields. Boston: Kluwer.

    Book  Google Scholar 

  • Karhunen, K. (1947). Uber lineare methoden in der Wahrscheinlichkeitsrechnung. Annals of the Academy of Sciences Finland, 37, 1–79.

    Google Scholar 

  • Kay, S. M. (1989). Modern spectrum analysis. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Kolmogorov, A. N., & Rozanov, Yu A. (1960). On strong mixing conditions for stationary Gaussian processes. Theory of Probability and Applications, 5(2), 204–208.

    Article  Google Scholar 

  • Kolmogorov, A.N. & Zurbenko, I.G. (1978). Estimation of spectral functions of stochastic processes. In Paper presented at the 11th European meeting of statisticians, Oslo

  • Koopmans, L. H. (1995) The spectral analysis of time series. San Diego, California: Academic Press.

    Google Scholar 

  • Kose, M.A., Otrok, C., & Prasad, E.S. (2008). Global business cycles: Convergence or decoupling? IMF Working Paper No. WP/08/143

  • Loynes, R. M. (1968). On the concept of the spectrum for nonstationary processes. Journal of the Royal Statistical Society Series B, 30, 1–30.

    Google Scholar 

  • Mark, W. D. (1970). Spectral analysis of the convolution and filtering of nonstationary stochastic processes. Journal of Sound Vibrations, 11, 19.

    Article  Google Scholar 

  • Martin, W., & Flandrin, P. (1985). Wigner-Ville spectral analysis of non-stationary processes. IEEE Transactions ASSP, 33, 1460–1470.

    Article  Google Scholar 

  • Melard, G. (1978). Proprieties du spectra evolutif d’un processus nonstationnnaire. Annales de l’Institut Henri Poincare, 14, 411–424.

    Google Scholar 

  • Melard, G. (1985). An example of the evolutionary spectrum theory. Journal of Time Series Analysis, 6(2), 81–90.

    Article  Google Scholar 

  • Melard, G., & Schutter, A. (1989). Contributions to evolutionary spectral theory. Journal of Time Series Analysis, 10(1), 41–63.

    Article  Google Scholar 

  • Meyer, Y. (1993). Wavelets: Algorithms and applications. Philadelphia: SIAM.

    Google Scholar 

  • Moran, P. A. P. (1953). The statistical analysis of the Canadian lynx cycle I: Structure and prediction. Australian Journal of Zoology, 1, 163–173.

    Article  Google Scholar 

  • Morrison, D. F. (1976). Multivariate statistical methods. New York: McGraw-Hill.

    Google Scholar 

  • Nachane, D. M. (1997). Purchasing power parity: An analysis based on the evolutionary spectrum. Applied Economics, 29, 1515–1524.

    Article  Google Scholar 

  • Nachane, D. M. (2006). Econometrics: Theoretical foundations and empirical perspectives. Delhi: Oxford University Press.

    Google Scholar 

  • Nachane, D. M., & Dubey, A. K. (2013) Trend and cyclical decoupling: New estimates based on spectral causality tests and wavelet correlations. Applied Economics, 45(31), 4419–4428.

    Article  Google Scholar 

  • Nachane, D. M., & Ray, D. (1993). Modelling exchange rate dynamics: New perspectives from the frequency domain. Journal of Forecasting, 12, 379–394.

    Article  Google Scholar 

  • Nagabhushanam, K., & Bhagwan, C. S. K. (1968). Non-stationary processes and spectrum. Canadian Journal of Mathematics, 20, 1203–1206.

    Article  Google Scholar 

  • Naidu, P. S. (1996). Modern spectrum analysis of time series. New York: CRC Press.

    Google Scholar 

  • Nikias, C. L., & Petropulu, A. P. (1993). Higher-order spectral analysis: A nonlinear signal processing framework. New York: Prentice-Hall Inc.

    Book  Google Scholar 

  • Page, C. H. (1952). Instantaneous power spectra. Journal of Applied Physics, 23, 1203–1206.

    Article  Google Scholar 

  • Parzen, E. (1957). On consistent estimates of the spectrum of a stationary time series. Annals of Mathematical Statistics, 28, 329–348.

    Article  Google Scholar 

  • Parzen, E. (1967). On empirical multiple time series analysis. In Proceedings of the 5th Berkeley symposium on mathematical statistics & probability, p. 305–340

  • Percival, B. P., & Walden, A. T. (1998). Spectral analysis for physical applications: Multitaper and conventional univariate techniques. Cambridge: Cambridge University Press.

    Google Scholar 

  • Portnoff, M. R. (1980). Time–frequency representations of digital signals and systems based on short-time Fourier analysis. IEEE Transactions ASSP, 28, 55–69.

    Article  Google Scholar 

  • Priestley, M. B. (1965). Evolutionary spectra and non-stationary processes. Journal of the Royal Statistical Society Series B, 27, 204–237.

    Google Scholar 

  • Priestley, M. B. (1966). Design relations for non-stationary processes. Journal of the Royal Statistical Society Series B, 28, 228–240.

    Google Scholar 

  • Priestley, M. B. (1969). Estimation of transfer functions in closed loop stochastic systems. Automatica, 5, 623–632.

    Article  Google Scholar 

  • Priestley, M. B. (1981). Spectral analysis and time series. London: Academic Press.

    Google Scholar 

  • Priestley, M. B. (1988). Non-linear and non-stationary time series analysis. London: Academic Press.

    Google Scholar 

  • Priestley, M. B., & Rao, T. S. (1969). A test for stationarity of time series. Journal of the Royal Statistical Society Series B, 31, 140–149.

    Google Scholar 

  • Priestley, M. B., & Tong, H. (1973). On the analysis of bivariate non-stationary processes. Journal of the Royal Statistical Society Series B, 35, 153–166.

    Google Scholar 

  • Rosenblatt, M. (1985). Stationary sequences and random fields. Boston: Birkhauser.

    Book  Google Scholar 

  • Royden, H. L., & Fitzpatrick, P. M. (2010). Real analysis (4th ed.). Noida: Pearson.

    Google Scholar 

  • Slutzky, E. (1937). The summation of random causes as the source of cyclical processes. Econometrica, 5, 105–146.

    Article  Google Scholar 

  • Sun, M., Li, C., Sekhar, L. N., & Sclabassi, R. J. (1989). Efficient computation of the discrete Pseudo-Wigner distribution. IEEE Transactions ASSP, 37, 1735–1741.

    Article  Google Scholar 

  • Tjostheim, D. (1976). Spectral generating operators for non-stationary processes. Advances in Applied Probability, 8, 831–846.

    Article  Google Scholar 

  • Toda, H. Y., & Phillps, P. C. B. (1993). Vector autoregressions and causality. Econometrica, 61(6), 1367–1393.

    Article  Google Scholar 

  • Toda, H. Y., & Yamamoto, T. (1995). Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics, 98, 225–255.

    Article  Google Scholar 

  • Vorobjev, L. S., & Zurbenko, I. G. (1979). The bounds for the power of C(α)-tests and their applications. Teoriya Veroyatnostei i ee Primeneniya, 24(2), 252–266. (in Russian).

    Google Scholar 

  • Welch, P. D. (1967). The use of fast Fourier transform for estimation of power spectra: A method based on time-averaging over short, modified periodograms. IEEE Transactions AU, 15, 70–73.

    Article  Google Scholar 

  • Wigner, E. (1932). On the quantum correction for thermodynamic equilibrium. Physics Reviews, 40, 749–759.

    Article  Google Scholar 

  • Yao, F., & Hosoya, Y. (2000). Inference on one-way effect and evidence on Japanese macroeconomic data. Journal of Econometrics, 98, 225–255.

    Article  Google Scholar 

  • Zurbenko, I. G. (1978). On a statistic for the spectral density of a stationary sequence Dokaldi Akademic Nauk. SSSR, 239(1), 34–37.

    Google Scholar 

  • Zurbenko, I. G. (1980). On effectiveness of estimations of the spectral density of a stationary process. Teoriya Veroyatnostei i ee Primeneniya, 25(3), 476–489. (in Russian).

    Google Scholar 

  • Zurbenko, I. G. (1982). On consistent estimators for higher spectral densities Dokaldi Akademic Nauk. SSSR, 264(3), 529–532.

    Google Scholar 

  • Zurbenko, I. G. (1986). The spectral analysis of time series. Amsterdam: North-Holland.

    Google Scholar 

  • Zurbenko, I. G. (1991). Spectral analysis of non-stationary time series. International Statistical Review, 59, 163–174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Nachane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nachane, D.M. Time-varying spectral analysis: theory and applications. Ind. Econ. Rev. 53, 3–27 (2018). https://doi.org/10.1007/s41775-018-0030-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41775-018-0030-2

Keywords

JEL Classification

Navigation