Skip to main content

Advertisement

Log in

Mars Simulation Facilities: A Review of Recent Developments, Capabilities and Applications

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Understanding the habitability of both past and present Mars continues to evoke scientific interest, particularly now that there is growing evidence of previous, vastly available liquid water and a warmer Martian climate. While today the surface of the Red Planet is barren and dry, the presence of hydrated minerals like phyllosilicates and sulphate minerals may indicate that the planet was once much more conducive to the emergence of life. These observations are the driving force behind investigations into possible biomarkers and signs of extinct life in the context of Mars. While Mars orbiters, landers and rovers have significantly improved our understanding of the planet’s past, Earth-based experiments are necessary to support those missions technically and scientifically. Simulation facilities replicating the Mars climate are used to test instruments before flight and investigate interactions of biomarkers with the Martian environment. Here, we review some exemplary, modern ground-based facilities with a focus on sample species relevant to astrochemistry and astrobiology. The presented Mars simulation facilities utilize a variety of technical implementations and thus are capable of simulating all of the major environmental parameters on the Martian surface: atmosphere, temperature and electromagnetic solar radiation. Depending on the subject-specific requirements of each investigation, these setups integrate various simulation features and different measurement techniques. A few examples of particularly remarkable simulation facilities include: the Planetary Atmospheres and Surfaces Chamber and the MARTE Simulation Chamber at INTA's Centro de Astrobiologia, Spain, which are unique in terms of integrated measurement techniques and Martian dust simulation; the Mars Simulation Facility, one of several planetary simulation chambers based at the German aerospace center DLR, Germany, is specialized in humidity measurements and sample analysis using PAM fluorometry; the Mars Simulation Chamber/Planetary Atmosphere Chamber at the Kennedy Space Center, USA, integrates an optical filter system to simulate ultraviolet-light attenuation by Martian dust; the Mars Environmental Simulation Chamber at Aarhus University, Denmark, provides atmospheric cooling and the possibility to extract samples mid-experiment. Many state-of-the-art technologies used in Mars simulation chambers are also integral to space-based experimental platforms, such as the planned OREOcube/Exocube experiment on the International Space Station. In-situ space experiments are highly complementary to Martian simulations, particularly in providing supplementary knowledge about the influence of broad-range radiation exposure and the true solar spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Similar content being viewed by others

Data availability

We declare, that for this review article no datasets were generated or analyzed.

References

  1. Kuiper GP (1947) Infrared spectra of planets. Astrophys J 106:251

    Article  CAS  Google Scholar 

  2. Lyot B (1929) Recherches Sur La Polarisation De La Lumière Des Planètes Et De Quelques Substances Terrestres

  3. Pettit E, Nicholson SB (1924) Radiation measures on the planet mars. Publ Astron Soc Pac 36(213):269–272

    Google Scholar 

  4. Carr MH (2007) Global structure and tectonics. In: Carr MH (ed) The surface of mars. Cambridge University Press, Cambridge, pp 77–94

    Chapter  Google Scholar 

  5. Hamilton WB et al (2007) Earth's first two billion years—the era of internally mobile crust. In: 4-D Framework of continental crust, vol 200. Geological Society of America

  6. Wegener A (1920) Die Entstehung Der Kontinente Und Ozeane. In: F. Vieweg (ed) 2. gänzlich umgearbeitet Auflage. Braunschweig

  7. Rossi AP, van Gasselt S (2010) Geology of mars after the first 40 years of exploration. Res Astron Astrophys 10(7):621

    Article  Google Scholar 

  8. Neukum G et al (2001) Cratering records in the inner solar system in relation to the lunar reference system. Sp Sci Rev 96(1):55–86

    Article  Google Scholar 

  9. Phillips RJ et al (2001) Ancient geodynamics and global-scale hydrology on mars. Science 291(5513):2587–2591

    Article  CAS  Google Scholar 

  10. Bibring J-P et al (2006) Global mineralogical and aqueous mars history derived from omega/mars express data. Science 312(5772):400–404

    Article  CAS  Google Scholar 

  11. Head JW et al (1999) Possible ancient oceans on mars: evidence from mars orbiter laser altimeter data. Science 286(5447):2134–2137

    Article  CAS  Google Scholar 

  12. Dolginov SS (1978) On the magnetic field of mars: mars 2 and 3 evidence. Geophys Res Lett 5(1):89–92

    Article  Google Scholar 

  13. Trokhimovskiy A et al (2015) Mars’ water vapor mapping by the spicam Ir spectrometer: five martian years of observations. Icarus 251:50–64

    Article  Google Scholar 

  14. Whiteway JA et al (2009) Mars water-ice clouds and precipitation. Science 325(5936):68–70

    Article  CAS  Google Scholar 

  15. Smith DE et al (2001) Seasonal variations of snow depth on mars. Science 294(5549):2141–2146

    Article  CAS  Google Scholar 

  16. Picardi G et al (2005) Radar soundings of the subsurface of mars. Science 310(5756):1925–1928

    Article  CAS  Google Scholar 

  17. Krasnopolsky VA et al (2004) Detection of methane in the martian atmosphere: evidence for life? Icarus 172(2):537–547

    Article  CAS  Google Scholar 

  18. Lefèvre F, Forget F (2009) Observed variations of methane on mars unexplained by known atmospheric chemistry and physics. Nature 460(7256):720–723

    Article  Google Scholar 

  19. Yen AS et al (2005) An integrated view of the chemistry and mineralogy of martian soils. Nature 436(7047):49–54

    Article  CAS  Google Scholar 

  20. Kuebler AW, Haskin LA, Jolliff BL (2003) A study of olivine alteration to iddingstone using Raman spectroscopy, lunar and planetary science XXXIV

  21. Poulet F et al (2005) Phyllosilicates on mars and implications for early martian climate. Nature 438(7068):623–627

    Article  CAS  Google Scholar 

  22. Yen AS et al (2000) Evidence that the reactivity of the martian soil is due to superoxide ions. Science 289(5486):1909–1912

    Article  CAS  Google Scholar 

  23. Cantor BA et al (2001) Martian dust storms: 1999 mars orbiter camera observations. J Geophys Res Planets 106(E10):23653–23687

    Article  Google Scholar 

  24. Hess SL et al (1980) The annual cycle of pressure on mars measured by Viking landers 1 and 2. Geophys Res Lett 7(3):197–200

    Article  Google Scholar 

  25. Bish DL et al (2013) X-ray diffraction results from mars science laboratory: mineralogy of rocknest at gale crater. Science 341(6153):1238932

    Article  CAS  Google Scholar 

  26. Gellert R et al (2015) In situ compositional measurements of rocks and soils with the alpha particle X-ray spectrometer on Nasa’s mars rovers. Elements 11(1):39–44

    Article  CAS  Google Scholar 

  27. Morris RV et al (2004) Mineralogy at Gusev Crater from the Mössbauer spectrometer on the spirit rover. Science 305(5685):833–836

    Article  CAS  Google Scholar 

  28. Morris RV et al (2006) Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, mars: opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. J Geophys Res Planets 111(E12)

  29. Thomas NH et al (2018) Characterization of hydrogen in basaltic materials with laser-induced breakdown spectroscopy (libs) for application to Msl Chemcam data. J Geophys Res Planets 123(8):1996–2021

    Article  CAS  Google Scholar 

  30. Chen Z et al (2022) Probabilistic multivariable calibration for major elements analysis of Marscode martian laser-induced breakdown spectroscopy instrument on Zhurong rover. Spectrochim Acta Part B 197:106529

    Article  CAS  Google Scholar 

  31. Anderson RB et al (2022) Post-landing major element quantification using supercam laser induced breakdown spectroscopy. Spectrochim Acta Part B 188:106347

    Article  CAS  Google Scholar 

  32. Bhartia R et al (2021) Perseverance’s scanning habitable environments with Raman and luminescence for organics and chemicals (Sherloc) investigation. Sp Sci Rev 217(4):58

    Article  Google Scholar 

  33. Sun VZ, Milliken RE (2015) Ancient and recent clay formation on mars as revealed from a global survey of hydrous minerals in Crater Central Peaks. J Geophys Res Planets 120(12):2293–2332

    Article  CAS  Google Scholar 

  34. Cannon KM et al (2019) Mars global simulant Mgs-1: a rocknest-based open standard for basaltic martian regolith simulants. Icarus 317:470–478

    Article  CAS  Google Scholar 

  35. Franz HB et al (2017) Initial sam calibration gas experiments on mars: quadrupole mass spectrometer results and implications. Planet Sp Sci 138:44–54

    Article  CAS  Google Scholar 

  36. McElroy MB, Donahue TM (1972) Stability of the Martian atmosphere. Science 177(4053):986–988

    Article  CAS  Google Scholar 

  37. Mandt K et al (2015) Comparative planetology of the history of nitrogen isotopes in the atmospheres of titan and mars. Icarus 254:259–261

    Article  CAS  Google Scholar 

  38. Mahaffy PR et al (2013) Abundance and isotopic composition of gases in the martian atmosphere from the curiosity rover. Science 341(6143):263–266

    Article  CAS  Google Scholar 

  39. Zhang Q et al (2020) Atomic oxygen escape on mars driven by electron impact excitation and ionization. Astron J 159(2):54

    Article  CAS  Google Scholar 

  40. Fedorova A et al (2006) Mars water vapor abundance from Spicam Ir spectrometer: seasonal and geographic distributions. J Geophys Res Planets 111(E9)

  41. Chen B, Liu Z (2016) Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of Ecmwf and Ncep reanalyses, radiosonde, Gps, and microwave satellite. J Geophys Res Atmos 121(19):11442–411462

    Article  Google Scholar 

  42. Formisano V et al (2004) Detection of methane in the atmosphere of mars. Science 306(5702):1758–1761

    Article  CAS  Google Scholar 

  43. Mumma MJ et al (2009) Strong release of methane on mars in northern summer 2003. Science 323(5917):1041–1045

    Article  CAS  Google Scholar 

  44. Webster CR et al (2015) Mars methane detection and variability at gale crater. Science 347(6220):415–417

    Article  CAS  Google Scholar 

  45. Webster CR et al (2018) Background levels of methane in mars’ atmosphere show strong seasonal variations. Science 360(6393):1093–1096

    Article  CAS  Google Scholar 

  46. Coblentz WW (1927) Temperature measurements on the planet mars, 1926. Popular Astronomy 35:145

    Google Scholar 

  47. Menzel DH et al (1926) Planetary temperatures derived from water-cell transmissions. Astrophys J 63:177–187

    Article  Google Scholar 

  48. Mellon MT et al (2000) High-resolution thermal inertia mapping from the mars global surveyor thermal emission spectrometer. Icarus 148(2):437–455

    Article  Google Scholar 

  49. Haberle RM et al (2019) Documentation of the Nasa/Ames legacy mars global climate model: simulations of the present seasonal water cycle. Icarus 333:130–164

    Article  Google Scholar 

  50. Haberle RM (2015) Solar system/sun, atmospheres, evolution of atmospheres|planetary atmospheres: mars. In: North GR, Pyle J, Zhang F (eds) Encyclopedia of atmospheric sciences, 2nd edn. Academic Press, Oxford, pp 168–177

    Chapter  Google Scholar 

  51. Conrath BJ et al (2000) Mars global surveyor thermal emission spectrometer (Tes) observations: atmospheric temperatures during aerobraking and science phasing. J Geophys Res Planets 105(E4):9509–9519

    Article  CAS  Google Scholar 

  52. NASA (2022) The planetary atmospheres node

  53. Vicente-Retortillo Á et al (2015) A model to calculate solar radiation fluxes on the martian surface. J Sp Weather Sp Clim 5:A33

    Article  Google Scholar 

  54. 2000 Astm Standard Extraterrestrial Spectrum Reference E-490-00, ASTM

  55. Appelbaum J, Flood DJ (1990) Solar radiation on mars. Sol Energy 45(6):353–363

    Article  Google Scholar 

  56. Vicente-Retortillo A et al (2020) In situ Uv measurements by Msl/Rems: dust deposition and angular response corrections. Sp Sci Rev 216(5):97

    Article  Google Scholar 

  57. Zorzano MP et al (2013) Rems ultraviolet sensor: first Uv measurements from the martian surface

  58. Smith MD et al (2016) Aerosol optical depth as observed by the mars science laboratory rems Uv photodiodes. Icarus 280:234–248

    Article  Google Scholar 

  59. Patel MR et al (2004) The Uv environment of the beagle 2 landing site: detailed investigations and detection of atmospheric state. Icarus 168(1):93–115

    Article  Google Scholar 

  60. Hassler DM et al (2014) Mars’ surface radiation environment measured with the mars science laboratory’s curiosity rover. Science 343(6169):1244797

    Article  Google Scholar 

  61. U. N. S. C. o. t. E. o. A (2008) Radiation, sources and effects of ionizing radiation

  62. Wu Z et al (2021) A mars environment chamber coupled with multiple in situ spectral sensors for mars exploration. Sensors 21(7):2519

    Article  CAS  Google Scholar 

  63. Sobrado JM et al (2014) Mimicking mars: a vacuum simulation chamber for testing environmental instrumentation for mars exploration. Rev Sci Instrum 85(3):035111

    Article  CAS  Google Scholar 

  64. Krauss CE (2003) Experimental evidence for electrostatic discharging of dust near the surface of mars. New J Phys 5:70

    Article  Google Scholar 

  65. Aplin KL et al (2012) Laboratory analogues of martian electrostatic discharges. Planet Sp Sci 69(1):100–104

    Article  CAS  Google Scholar 

  66. Peterside DT et al (2018) Testing of greenhouse cladding materials for space environments, part 2: laminates. Appl Eng Agric 34(3):575–580

    Article  Google Scholar 

  67. Veismann M et al (2021) Low-density multi-fan wind tunnel design and testing for the ingenuity mars helicopter. Exp Fluids 62(9):193

    Article  Google Scholar 

  68. Greeley R et al (1980) Threshold windspeeds for sand on mars: wind tunnel simulations. Geophys Res Lett 7(2):121–124

    Article  Google Scholar 

  69. Wilson CF et al (2008) A wind tunnel for the calibration of mars wind sensors. Planet Sp Sci 56(11):1532–1541

    Article  Google Scholar 

  70. Vakkada Ramachandran A et al (2020) Space environmental chamber for planetary studies. Sensors (Basel) 20(14):3996

    Article  Google Scholar 

  71. Bennett KA et al The curiosity rover’s exploration of glen torridon, gale crater, mars: an overview of the campaign and scientific results. J Geophys Res Planets e2022JE007185

  72. Farley KA et al (2020) Mars 2020 mission overview. Sp Sci Rev 216(8):142

    Article  Google Scholar 

  73. Planum O (2021) The landing site for the exomars “rosalind franklin” rover mission: geological context and prelanding interpretation. Astrobiology 21(3):345–366

    Article  Google Scholar 

  74. ten Kate IL (2005) Amino acid photostability on the martian surface. Meteor Planet Sci 40:1185–1193

    Article  Google Scholar 

  75. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529

    Article  CAS  Google Scholar 

  76. ten Kate IL et al (2006) The effects of martian near surface conditions on the photochemistry of amino acids. Planet Sp Sci 54(3):296–302

    Article  Google Scholar 

  77. Dartnell LR (2011) Ionizing radiation and life. Astrobiology 11(6):551–582

    Article  CAS  Google Scholar 

  78. Lignell A et al (2021) Visible-light photoionization of aromatic molecules in water-ice: organic chemistry across the universe with less energy. Chem Phys Lett 778:138814

    Article  CAS  Google Scholar 

  79. Gudipati MS, Allamandola LJ (2004) Polycyclic aromatic hydrocarbon ionization energy lowering in water ices. Astrophys J 615(2):L177

    Article  CAS  Google Scholar 

  80. Rak J et al (2015) Mechanisms of damage to DNA labeled with electrophilic nucleobases induced by ionizing or Uv radiation. J Phys Chem B 119(26):8227–8238

    Article  CAS  Google Scholar 

  81. Poch O et al (2014) Laboratory insights into the chemical and kinetic evolution of several organic molecules under simulated mars surface Uv radiation conditions. Icarus 242:50–63

    Article  CAS  Google Scholar 

  82. Rouquette L et al (2020) Dimerization of uracil in a simulated mars-like Uv radiation environment. Astrobiology 20(11):1363–1376

    Article  CAS  Google Scholar 

  83. Maté B et al (2015) Stability of extraterrestrial glycine under energetic particle radiation estimated from 2kev electron bombardment experiments. Astrophys J 806(2):151

    Article  Google Scholar 

  84. Cronin JR (1996) Enan tiomeric excesses in meteoritic amino acids. Science 275:951–955

    Article  Google Scholar 

  85. Biver N (2002) Chemical composition diversity among 24 comets observed at radio wavelengths, earth, moon and planets, vol 90. Springer, Dordrecht, pp 323–333

    Google Scholar 

  86. Fray N et al (2016) High-molecular-weight organic matter in the particles of comet 67p/Churyumov–Gerasimenko. Nature 538(7623):72–74

    Article  CAS  Google Scholar 

  87. Ferris JP (2006) Montmorillonite-catalysed formation of rna oligomers: the possible role of catalysis in the origins of life. Philos Trans R Soc Lond B Biol Sci 361(1474):1777–1786 (discussion 1786)

    Article  CAS  Google Scholar 

  88. Kloprogge JTT, Hartman H (2022) Clays and the origin of life: the experiments. Life (Basel) 12(2)

  89. de Vera J-P et al (2014) Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days. Planet Sp Sci 98:182–190

    Article  Google Scholar 

  90. Blachowicz A et al (2019) Proteomic and metabolomic characteristics of extremophilic fungi under simulated mars conditions. Front Microbiol 10:1013

    Article  Google Scholar 

  91. Rummel JD (2002) Cospars planetary protection policy: a consolidated draft. Adv Sp Res 30(6):1567–1571

    Article  Google Scholar 

  92. Lorek A, Koncz A (2013) Simulation and measurement of extraterrestrial conditions for experiments on habitability with respect to mars. In: Habitability of other planets and satellites, pp 145–162

  93. Vago J et al (2016) Esa exomars program: the next step in exploring mars. Sol Syst Res 49(7):518–528

    Article  Google Scholar 

  94. Aprentas (2017) Laborpraxis band 4: analytische methoden. Springer, Berlin

  95. Griffiths PR (2002) Introduction to vibrational spectroscopy. Wiley, Oxford

    Google Scholar 

  96. Mueller M (2010), Neue wege zur quantifizierung mit der laserinduzierten plasmaspektroskopie (Libs) PhD

  97. Anabitarte F et al (2012) Laser-induced breakdown spectroscopy: fundamentals, applications, and challenges. ISRN Spectrosc 2012:1–12

    Article  Google Scholar 

  98. Tognoni E (2002) Quantitative micro-analysis by laser-induced breakdown. Spectrochim Acta Part B 57:1115–1130

    Article  Google Scholar 

  99. Rohácék K (1999) Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynth A 37:339–363

    Google Scholar 

  100. Jensen LL et al (2008) A facility for long-term mars simulation experiments: the mars environmental simulation chamber (Mesch). Astrobiology 8(3):537–548

    Article  Google Scholar 

  101. Martins Z et al (2017) Earth as a tool for astrobiology—a european perspective. Sp Sci Rev 209(1–4):43–81

    Article  Google Scholar 

  102. Godin PJ et al (2021) Salt tolerance and Uv protection of Bacillus subtilis and Enterococcus faecalis under simulated martian conditions. Astrobiology 21(4):394–404

    Article  CAS  Google Scholar 

  103. Schuerger AC et al (2003) Survival of endospores of bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of mars. Icarus 165(2):253–276

    Article  CAS  Google Scholar 

  104. Schuerger AC et al (2008) Slow degradation of Atp in simulated martian environments suggests long residence times for the biosignature molecule on spacecraft surfaces on mars. Icarus 194(1):86–100

    Article  CAS  Google Scholar 

  105. Schuerger AC et al (2011) Methane evolution from Uv-irradiated spacecraft materials under simulated martian conditions: implications for the mars science laboratory (Msl) mission. Icarus 213(1):393–403

    Article  CAS  Google Scholar 

  106. Hintze PE et al (2010) Alteration of five organic compounds by glow discharge plasma and Uv light under simulated mars conditions. Icarus 208(2):749–757

    Article  CAS  Google Scholar 

  107. Kuhn HJ et al (2016) Chemical actinometry. Iupac Technical Report

  108. Mateo-Martí E et al (2006) A chamber for studying planetary environments and its applications to astrobiology. Meas Sci Technol 17(8):2274–2280

    Article  Google Scholar 

  109. Mateo-Marti E (2014) Planetary atmosphere and surfaces chamber (Pasc): a platform to address various challenges in astrobiology. Challenges 5(2):213–223

    Article  Google Scholar 

  110. Sánchez FJ et al (2012) The resistance of the Lichen Circinaria gyrosa (Nom. Provis.) towards simulated mars conditions—a model test for the survival capacity of an eukaryotic extremophile. Planet Sp Sci 72(1):102–110

    Article  Google Scholar 

  111. Sobrado JM (2020) Mimicking the martian hydrological cycle: a set-up to introduce liquid water in vacuum. Sensors (Basel) 20(21):6150

    Article  CAS  Google Scholar 

  112. Motamedi K et al (2015) Design of a mars atmosphere simulation chamber and testing a raman laser spectrometer (Rls) under conditions pertinent to mars rover missions. EPJ Tech Instrument 2:1–15

    Article  Google Scholar 

  113. Lorek A, Majewski J (2018) Humidity measurement in carbon dioxide with capacitive humidity sensors at low temperature and pressure. Sensors (Basel) 18(8):2615

    Article  Google Scholar 

  114. Photosynthesis yield analyzer mini-pam (1999) Heinz Walz GmbH

  115. Zou Y et al (2021) Scientific objectives and payloads of Tianwen-1, China’s first mars exploration mission. Adv Sp Res 67(2):812–823

    Article  Google Scholar 

  116. de Vera JP (2020) Biomolecules in space: the way to search for life on mars. In: Astrobiology on the international space station, pp 1–39

  117. Panitz C et al (2014) The SPORES experiment of the EXPOSE-R mission: Bacillus subtilis spores in artificial meteorites. Int J Astrobiol 14(1):105–114

    Article  Google Scholar 

  118. Bertrand M et al (2014) The amino experiment: exposure of amino acids in the Expose-R experiment on the international space station and in laboratory. Int J Astrobiol 14(1):89–97

    Article  Google Scholar 

  119. Mancinelli RL (2014) The affect of the space environment on the survival of Halorubrum chaoviator and Synechococcus (Nägeli): data from the space experiment Osmo on Expose-R. Int J Astrobiol 14(1):123–128

    Article  Google Scholar 

  120. Neuberger K et al (2014) Survival of spores of Trichoderma longibrachiatumin space: data from the space experiment spores on Expose-R. Int J Astrobiol 14(1):129–135

    Article  Google Scholar 

  121. Novikova N et al (2015) Study of the effects of the outer space environment on dormant forms of microorganisms, fungi and plants in the ‘Expose-R’ experiment. Int J Astrobiol 14(1):137–142

    Article  Google Scholar 

  122. Bryson KL et al (2011) The organic experiment on Expose-R on the Iss: flight sample preparation and ground control spectroscopy. Adv Sp Res 48(12):1980–1996

    Article  CAS  Google Scholar 

  123. Dachev T et al (2014) Expose-R cosmic radiation time profile. Int J Astrobiol 14(1):17–25

    Article  Google Scholar 

  124. Rabbow E et al (2014) The astrobiological mission Expose-R on board of the international space station. Int J Astrobiol 14(1):3–16

    Article  Google Scholar 

  125. Demets R et al (2014) Window contamination on expose-R. Int J Astrobiol 14(1):33–45

    Article  Google Scholar 

  126. Rabbow E et al (2017) Expose-R2: the astrobiological ESA mission on board of the international space station. Front Microbiol 8:1533

    Article  Google Scholar 

  127. Ehrenfreund P et al (2014) The O/Oreos Mission—astrobiology in low earth orbit. Acta Astronaut 93:501–508

    Article  Google Scholar 

  128. Sgambati A et al (2020) Spectromodule: a modular in-situ spectroscopy platform for exobiology and space sciences. Acta Astronaut 166:377–390

    Article  CAS  Google Scholar 

  129. Elsaesser A et al (2014) Organics exposure in orbit (Oreocube): a next-generation space exposure platform. Langmuir 30(44):13217–13227

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding from the Federal Ministry of Economics and Technology (BMWi)/Deutsches Zentrum für Luft- und Raumfahrt (DLR) Grants 50WB1623 and 50WB2023 (SW, DB, AE), Deutsche Forschungsgemeinschaft (DFG) Grant 490702919 (RN, AE), Volkswagen Foundation and its Freigeist Program (AE).

Funding

This article was funded by Deutsche Forschungsgemeinschaft, 490702919, Ruben Nitsche, 490702919, Andreas Elsaesser. Deutsches Zentrum für Luft- und Raumfahrt, 50WB2023, Severin Wipf, 50WB2023, David J. Burr, 50WB2023, Andreas Elsaesser. Bundesministerium für Wirtschaft und Technologie, 50WB1623, Severin Wipf, 50WB1623, David J. Burr, 50WB1623, Andreas Elsaesser.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Elsaesser.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wipf, S., Nitsche, R., Burr, D.J. et al. Mars Simulation Facilities: A Review of Recent Developments, Capabilities and Applications. J Indian Inst Sci 103, 739–759 (2023). https://doi.org/10.1007/s41745-023-00377-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-023-00377-6

Keywords

Navigation