Skip to main content
Log in

Fatty Acyl-AMP Ligases as Mechanistic Variants of ANL Superfamily and Molecular Determinants Dictating Substrate Specificities

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Fatty acyl-AMP ligases (FAAL) are enzymes that establish the crosstalk between fatty acid synthases and polyketide synthases or non-ribosomal peptide synthetases by activating newly synthesized fatty acids, shuttling them towards polyketide synthesis. These enzymes are unique as they have evolved a strict rejection mechanism for the coenzyme-A but can recognize and react with the phosphopantetheine of acyl-carrier proteins. A strategically placed insertion in the N-terminal domain and the rigidity of the hydrophobic anchor holding the insertion is at the heart of such a discrimination mechanism, the molecular details of which is yet to be clearly understood. The unique structural features of the insertion have been exploited to filter out FAALs from other members of the superfamily, in silico. Interestingly, several independent studies have characterized FAALs from different organisms such as Legionella, Myxococcus, Ralstonia, Pseudoalteromonas, Sorangium, etc. to name a few, laying emphasis on the usage of a FAAL-specific biochemistry in these organisms, particularly for the production of important bioactive molecules. These bioactive molecules help in improving the fitness of these systems to tide over the competition for nutritional resources in their local niche. Substrate specificity of these enzymes is another interesting aspect, which may hint at their potential roles in the cell. Various substrate-bound crystal structures have been used to identify the determinants of chain-length specificity and predict the preferences for different FAALs (both mycobacterial and non-mycobacterial). The fascinating details of the mechanistic variation of these enzymes and the molecular determinants that define the chain-length specificity have been discussed herewith.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:

Similar content being viewed by others

References

  1. Schmelz S, Naismith JH (2009) Adenylate-forming enzymes. Curr Opin Struct Biol 19:666–671

    Article  Google Scholar 

  2. Estrada P, Manandhar M, Dong SH, Deveryshetty J, Agarwal V, Cronan JE, Nair SK (2017) The pimeloyl-CoA synthetase BioW defines a new fold for adenylate-forming enzymes. Nat Chem Biol 13:668–674

    Article  Google Scholar 

  3. Wang M, Moynie L, Harrison PJ, Kelly V, Piper A, Naismith JH, Campopiano DJ (2017) Using the pimeloyl-CoA synthetase adenylation fold to synthesize fatty acid thioesters. Nat Chem Biol 13:660–667

    Article  Google Scholar 

  4. Harvey EN (1957) A history of luminescence from the earliest times until 1900. American Philosophical Society, Philadelphia

    Book  Google Scholar 

  5. Green AA, McElroy WD (1956) Crystalline firefly luciferase. Biochim Biophys Acta 20:170–176

    Article  Google Scholar 

  6. Koo JA, Schmidt SP, Schuster GB (1978) Bioluminescence of the firefly: key steps in the formation of the electronically excited state for model systems. Proc Natl Acad Sci USA 75:30–33

    Article  Google Scholar 

  7. Schuster GB, Dixon B, Koo JY, Schmidt SP, Smith JP (1979) Chemical mechanisms of chemi- and bioluminescence. Reactions of high energy content organic compounds. Photochem Photobiol 30:17–26

    Article  Google Scholar 

  8. The PyMOL Molecular Graphics, Version 1.8, Schrödinger LLC

  9. Lipmann F (1944) Enzymatic Synthesis Of Acetyl Phosphate. J Biol Chem 155:55–70

    Google Scholar 

  10. Berg P (1956) Acyl adenylates; an enzymatic mechanism of acetate activation. J Biol Chem 222:991–1013

    Google Scholar 

  11. Bar-Tana J, Shapiro B (1964) Studies on palmitoyl-coenzyme A synthetase. Biochem J 93:533–538

    Article  Google Scholar 

  12. Bar-Tana J, Rose G (1968) Studies on medium-chain fatty acyl-coenzyme A synthetase. Enzyme fraction I: mechanism of reaction and allosteric properties. Biochem J 109:275–282

    Article  Google Scholar 

  13. Bar-Tana J, Rose G, Shapiro B (1968) Studies on medium-chain fatty acyl-coenzyme A synthetase. Purification and properties. Biochem J 109:269–274

    Article  Google Scholar 

  14. Chang KH, Xiang H, Dunaway-Mariano D (1997) Acyl-adenylate motif of the acyl-adenylate/thioester-forming enzyme superfamily: a site-directed mutagenesis study with the Pseudomonas sp. strain CBS3 4-chlorobenzoate:coenzyme A ligase. Biochemistry 36:15650–15659

    Article  Google Scholar 

  15. Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2674

    Article  Google Scholar 

  16. Gulick AM (2009) Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem Biol 4:811–827

    Article  Google Scholar 

  17. Hisanaga Y, Ago H, Nakagawa N, Hamada K, Ida K, Yamamoto M, Hori T, Arii Y, Sugahara M, Kuramitsu S, Yokoyama S, Miyano M (2004) Structural basis of the substrate-specific two-step catalysis of long chain fatty acyl-CoA synthetase dimer. J Biol Chem 279:31717–31726

    Article  Google Scholar 

  18. Kochan G, Pilka ES, von Delft F, Oppermann U, Yue WW (2009) Structural snapshots for the conformation-dependent catalysis by human medium-chain acyl-coenzyme A synthetase ACSM2A. J Mol Biol 388:997–1008

    Article  Google Scholar 

  19. Yonus H, Neumann P, Zimmermann S, May JJ, Marahiel MA, Stubbs MT (2008) Crystal structure of DltA. Implications for the reaction mechanism of non-ribosomal peptide synthetase adenylation domains. J Biol Chem 283:32484–32491

    Article  Google Scholar 

  20. Conti E, Franks NP, Brick P (1996) Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure 4:287–298

    Article  Google Scholar 

  21. Wu R, Reger AS, Lu X, Gulick AM, Dunaway-Mariano D (2009) The mechanism of domain alternation in the acyl-adenylate forming ligase superfamily member 4-chlorobenzoate: coenzyme A ligase. Biochemistry 48:4115–4125

    Article  Google Scholar 

  22. Wu R, Cao J, Lu X, Reger AS, Gulick AM, Dunaway-Mariano D (2008) Mechanism of 4-chlorobenzoate:coenzyme A ligase catalysis. Biochemistry 47:8026–8039

    Article  Google Scholar 

  23. Mitchell CA, Shi C, Aldrich CC, Gulick AM (2012) Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains. Biochemistry 51:3252–3263

    Article  Google Scholar 

  24. Sundlov JA, Fontaine DM, Southworth TL, Branchini BR, Gulick AM (2012) Crystal structure of firefly luciferase in a second catalytic conformation supports a domain alternation mechanism. Biochemistry 51:6493–6495

    Article  Google Scholar 

  25. Trivedi OA, Arora P, Sridharan V, Tickoo R, Mohanty D, Gokhale RS (2004) Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature 428:441–445

    Article  Google Scholar 

  26. Arora P, Goyal A, Natarajan VT, Rajakumara E, Verma P, Gupta R, Yousuf M, Trivedi OA, Mohanty D, Tyagi A, Sankaranarayanan R, Gokhale RS (2009) Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis. Nat Chem Biol 5:166–173

    Article  Google Scholar 

  27. Yamada KD, Tomii K, Katoh K (2016) Application of the MAFFT sequence alignment program to large data—reexamination of the usefulness of chained guide trees. Bioinformatics 32:3246–3251

    Article  Google Scholar 

  28. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–W324

    Article  Google Scholar 

  29. Hayashi T, Kitamura Y, Funa N, Ohnishi Y, Horinouchi S (2011) Fatty acyl-AMP ligase involvement in the production of alkylresorcylic acid by a Myxococcus xanthus type III polyketide synthase. ChemBioChem 12:2166–2176

    Article  Google Scholar 

  30. Kage H, Kreutzer MF, Wackler B, Hoffmeister D, Nett M (2013) An iterative type I polyketide synthase initiates the biosynthesis of the antimycoplasma agent micacocidin. Chem Biol 20:764–771

    Article  Google Scholar 

  31. Hemmerling F, Lebe K, Wunderlich J, Hahn F (2018) An unusual FAAL-ACP didomain in ambruticin biosynthesis. ChemBioChem 19:1006–1011

    Article  Google Scholar 

  32. Marchetti PM, Kelly V, Simpson JP, Ward M, Campopiano DJ (2018) The carbon chain-selective adenylation enzyme TamA: the missing link between fatty acid and pyrrole natural product biosynthesis. Org Biomol Chem 16:2735–2740

    Article  Google Scholar 

  33. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

    Article  Google Scholar 

  34. Zhang Z, Zhou R, Sauder JM, Tonge PJ, Burley SK, Swaminathan S (2011) Structural and functional studies of fatty acyl adenylate ligases from E. coli and L. pneumophila. J Mol Biol 406:313–324

    Article  Google Scholar 

  35. Goyal A, Verma P, Anandhakrishnan M, Gokhale RS, Sankaranarayanan R (2012) Molecular basis of the functional divergence of fatty acyl-AMP ligase biosynthetic enzymes of Mycobacterium tuberculosis. J Mol Biol 416:221–238

    Article  Google Scholar 

  36. Gavalda S, Leger M, van der Rest B, Stella A, Bardou F, Montrozier H, Chalut C, Burlet-Schiltz O, Marrakchi H, Daffe M, Quemard A (2009) The Pks13/FadD32 crosstalk for the biosynthesis of mycolic acids in Mycobacterium tuberculosis. J Biol Chem 284:19255–19264

    Article  Google Scholar 

  37. Trivedi OA, Arora P, Vats A, Ansari MZ, Tickoo R, Sridharan V, Mohanty D, Gokhale RS (2005) Dissecting the mechanism and assembly of a complex virulence mycobacterial lipid. Mol Cell 17:631–643

    Article  Google Scholar 

  38. Siméone R, Léger M, Constant P, Malaga W, Marrakchi H, Daffe M, Guilhot C, Chalut C (2010) Delineation of the roles of FadD22, FadD26 and FadD29 in the biosynthesis of phthiocerol dimycocerosates and related compounds in Mycobacterium tuberculosis. FEBS J 277:2715–2725

    Article  Google Scholar 

  39. Vergnolle O, Chavadi SS, Edupuganti UR, Mohandas P, Chan C, Zeng J, Kopylov M, Angelo NG, Warren JD, Soll CE, Quadri LE (2015) Biosynthesis of cell envelope-associated phenolic glycolipids in Mycobacterium marinum. J Bacteriol 197:1040–1050

    Article  Google Scholar 

  40. Srivastava S, Chaudhary S, Thukral L, Shi C, Gupta RD, Gupta R, Priyadarshan K, Vats A, Haque AS, Sankaranarayanan R, Natarajan VT, Sharma R, Aldrich CC, Gokhale RS (2015) Unsaturated lipid assimilation by mycobacteria requires auxiliary cis-trans enoyl CoA isomerase. Chem Biol 22:1577–1587

    Article  Google Scholar 

  41. Toyoda K, Inui M (2018) Extracytoplasmic function sigma factor sigma(D) confers resistance to environmental stress by enhancing mycolate synthesis and modifying peptidoglycan structures in Corynebacterium glutamicum. Mol Microbiol 107:312–329

    Article  Google Scholar 

  42. Conti E, Stachelhaus T, Marahiel MA, Brick P (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16:4174–4183

    Article  Google Scholar 

  43. Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505

    Article  Google Scholar 

  44. Khurana P, Gokhale RS, Mohanty D (2010) Genome scale prediction of substrate specificity for acyl adenylate superfamily of enzymes based on active site residue profiles. BMC Bioinform 11:57

    Article  Google Scholar 

  45. Sankaranarayanan R, Saxena P, Marathe UB, Gokhale RS, Shanmugam VM, Rukmini R (2004) A novel tunnel in mycobacterial type III polyketide synthase reveals the structural basis for generating diverse metabolites. Nat Struct Mol Biol 11:894–900

    Article  Google Scholar 

  46. Andersson CS, Lundgren CA, Magnúsdóttir A, Ge C, Wieslander A, Martinez Molina D, Hogbom M (2012) The Mycobacterium tuberculosis very-long-chain fatty acyl-CoA synthetase: structural basis for housing lipid substrates longer than the enzyme. Structure 20:1062–1070

    Article  Google Scholar 

  47. Linne U, Schafer A, Stubbs MT, Marahiel MA (2007) Aminoacyl-coenzyme A synthesis catalyzed by adenylation domains. FEBS Lett 581:905–910

    Article  Google Scholar 

  48. Marahiel MA (2016) A structural model for multimodular NRPS assembly lines. Nat Prod Rep 33:136–140

    Article  Google Scholar 

  49. Kries H, Niquille DL, Hilvert D (2015) A subdomain swap strategy for reengineering nonribosomal peptides. Chem Biol 22:640–648

    Article  Google Scholar 

Download references

Acknowledgements

R. S. acknowledges funding from JC Bose Fellowship of Science and Engineering Research Board (SERB), India, and Centre of Excellence Project of Department of Biotechnology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Sankaranarayanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadarshan, K., Sankaranarayanan, R. Fatty Acyl-AMP Ligases as Mechanistic Variants of ANL Superfamily and Molecular Determinants Dictating Substrate Specificities. J Indian Inst Sci 98, 261–272 (2018). https://doi.org/10.1007/s41745-018-0084-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-018-0084-2

Keywords

Navigation