Skip to main content
Log in

Comprehensive Scheme for Evaluation of Potentially Toxic Elements (PTEs) Pollution in Surface Sediments of Wetlands, Case Study: Anzali Wetland

  • Research paper
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

Heavy metals are a serious concern in terms of their pollution in aquatic ecosystems because of their persistence, environmental toxicity and bioaccumulation. Evaluating the total concentration and mobility of potentially toxic elements (PTEs) in surficial sediments of Anzali wetland was taken into consideration in this study. Geo-accumulation index, ecological risk index and effects-range-median quotient were calculated to monitor the pollution risks. Additionally, four-step chemical partitioning analysis was performed on samples from eastern parts of the wetland. Index values categorized the whole area within the moderately to non-contaminated class. PTEs Cd > Pb > As > Zn showed remarkable percentages of total concentration in mobile phases (higher bioavailability risks). High values of LOI (loss on ignition) up to 15% and low values of Fe (1.6–2.62%) in sediment samples (higher shares of organics phase compared with Fe–Mn oxides) confirmed the eutrophic conditions. Findings of this research confirm the necessity of including PTEs index analysis and total concentration data accompanied by chemical partitioning results in mid- and long-term decision-making process within the framework of wetlands monitoring plan.

Highlights

  • A comprehensive scheme for integral interpretation of metals risk in wetland sediments

  • High LOI and low Fe content in sediments confirm eutrophic conditions

  • Higher shares of PTEs in oxidizable phase rather than reducibles were seen

  • Negligible share of Cd in residual phase confirms its anthropogenic source

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data are available in the manuscript.

Code Availability

Not applicable.

References

  • Abu El-Magd SA, Taha TH, Pienaar HH, Breil P, Amer RA, Namour P (2021) Assessing heavy metal pollution hazard in sediments of Lake Mariout. Egypt J African Earth Sci 176:104116

    Article  CAS  Google Scholar 

  • Aghsaei H, Dinan NM, Moridi A, Asadolahi Z, Delavar M, Fohrer N, Wagner PD (2020) Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan. Iran Sci Total Environ 712:136449

    Article  CAS  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils, 2nd edn. Blackie Academic & Professional, London

    Book  Google Scholar 

  • Amin HA, Saleh HN, Omar MY, Mostafa AR, Ebraham YE (2020) Spatial distribution and assessment of heavy metals pollution in sediments of Tobruk Bay (Libya). Adv Intell Syst Comput 1–55:618–629

    Google Scholar 

  • Arisekar U, Shakila RJ, Shalini R, Jeyasekaran G (2020) Human health risk assessment of heavy metals in aquatic sediments and freshwater fish caught from Thamirabarani River, the Western Ghats of South Tamil Naduar. Pollut Bull 159(4):111496

    Article  CAS  Google Scholar 

  • Bai J, Cui B, Yang Z, Xu X, Ding Q, Gao H (2010) Heavy metal contamination of cultivated wetland soils along a typical plateau lake from southwest China. Environ Earth Sci 59:1781–1788

    Article  CAS  Google Scholar 

  • Bai J, Cui B, Chen B (2011) Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland. China Ecol Model 222(2):301–306

    Article  CAS  Google Scholar 

  • Bastami KD, Neyestani MR, Molamohyedin N, Shafeian E, Haghparast S, Shirzadi IA, Baniamam M (2018) Bioavailability, mobility, and origination of metals in sediments from Anzali Wetland, Caspian Sea. Marine pollution bulletin.136: 22–32.

  • Berenjkar P, Saeedi M, Yuan Q (2019) Assessment of heavy metal release from dredged materials for different disposal scenarios: Study of Anzali international wetland. Iran Process Saf Environ Prot 132:94–104

    Article  CAS  Google Scholar 

  • Boboria D, Maata M, Mani FS (2021) Metal pollution in sediments and bivalves in Marovo Lagoon. Solomon Islands Marine Pollution Bulletin 164:112026

    Article  CAS  Google Scholar 

  • Carr RS, Long ER, Windom HL, Chapman DC, Thursby G, Sloane GM, Wolfe DA (1996) Sediment quality assessment studies of Tampa Bay. Florida Environ Toxically Chem 15:1218–1231

    Article  CAS  Google Scholar 

  • Charkhabi A, Sakizadeh M (2006) Assessment of spatial variation of water quality parameters in the most polluted branch of the Anzali wetland, Northern Iran. Pol J Environ Stud 15:395–403

    CAS  Google Scholar 

  • Charkhabi AH, Sakizadeh M, Bayat R (2008) Land use effects on heavy metal pollution of river sediments in Guilan, southwest of the Caspian Sea. Caspian J Environ Sci 6(2):133–140

    Google Scholar 

  • Chester R, Hughes RM (1967) A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic Sediment. Chem Geol 2:249–262

    Article  CAS  Google Scholar 

  • Darvish Bastami K, Neyestani MR, Molamohyedin N, Shafeian E, Haghparast S, Shirzadi IA, Baniamam M (2018) Bioavailability, mobility, and origination of metals in sediments from Anzali Wetland. Caspian Sea Marine Pollut Bull 136:22–32

    Article  Google Scholar 

  • Das AK, Chakraborty R, Cervera ML, De la Guardia M (1995) Metal speciation in solid matrices. Talanta 42(8):1007–1030

    Article  CAS  Google Scholar 

  • Davutluoglu OI, Seckın G, Kalat DG, Yılmaz T, Ersu CB (2010) Speciation and implications of heavy metal content in surface sediments of Akyatan Lagoon –Turkey. Desalination 260:199–210

    Article  CAS  Google Scholar 

  • De Caritat P, Cooper M, Jaireth S, Bastrakov E (2011) National Geochemical Survey of Australia: Preliminary implications for energy and mineral exploration. Geoscience Australia Record.

  • Eghbal N, Nasrabadi T, Karbassi AR, Taghavi L (2019) Evaluating the potential of plants (leaves) in removal of toxic metals from urban soils (case study of a district in Tehran city). Pollution 5(2):387–394

    CAS  Google Scholar 

  • Esmaeilzadeh M, Karbassi A, Bastami KD (2017) Antioxidant response to metal pollution in Phragmites australis from Anzali wetland. Mar Pollut Bull 119(1):376–380

    Article  CAS  Google Scholar 

  • Fazeli G, Karbassi A, Khoramnejadian S, Nasrabadi T (2019) Evaluation of urban soil pollution: a combined approach of toxic metals and polycyclic aromatic hydrocarbons (PAHs). Int J Environ Res 13(5):801–811

    Article  CAS  Google Scholar 

  • Foerstner U, Wittmann GTW (1981) Metal pollution in the aquatic environment. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis part 1. Soil science society of america book series 5, p 383–411, Madison, Wisconsin, USA

  • Gibs RJ (1973) Mechanism of trace metal transport in rivers. Science 80:71–73

    Article  Google Scholar 

  • Canadian Interim Sediment Quality Guidelines (CISQG)(1995) Canadian sediment quality guidelines for the protection of aquatic life. Environment Canada, Ottawa. 9 pp.

  • Hakanson L (1980) An Ecological Risk Index for Aquatic Pollution Control–A Sedimentological Approach. Water Res 14:975–1001

    Article  Google Scholar 

  • Hargalani FZ, Karbassi A, Monavari SM, Azar PA (2014) A novel pollution index based on the bioavailability of elements: a study on Anzali wetland bed sediments. Environ Monit Assess 186(4):2329–2348

    Article  Google Scholar 

  • HosseiniAlhashemi A, Karbassi AR, Kiabi BH, Monavari SM, Nabavi MB (2011) Accumulation and bioaccessibility of trace elements in wetland sediments. Afr J Biotechnol 10(9):1625–1636

    Google Scholar 

  • Huang L, Rad S, Xu L, Gui L, Song X, Li Y, Wu Z, Chen Z (2020) Heavy Metals Distribution, Sources, and Ecological Risk Assessment in Huixian Wetland. South China Water 12(2):431

    Google Scholar 

  • Jamshidi S, Bastami KD (2016) Metal contamination and its ecological risk assessment in the surface sediments of Anzali wetland, Caspian Sea. Marine pollution bulletin.113(1–2):559–565.

  • Karbassi AR, Monavari SM, Bidhendi GRN, Nouri J, Nematpour K (2008) Metal pollution assessment of sediment and water in the Shur River. Environmental monitoring and assessment. 147(1–3):107–116.

  • Karbassi AR, Nasrabadi T, Rezai M, Modabberi S (2014) Pollution with metals (As, Sb, Hg, Zn) in agricultural soil located close to Zarshuran gold mine, Iran. Environ Eng Manage J (EEMJ).13(1): 115–122.

  • Khoshkam M, Marzuki A, Al-Mulali U (2016) Socio-demographic effects on Anzali wetland tourism development. Tourism Management.54:96–106.

  • Kumar V, Sharma A, Pandita S, Bhardwaj R, Thukral AK, Cerda A (2020) A review of ecological risk assessment and associated health risks with heavy metals in sediment from India. Int J Sedim Res 35:516–526

    Article  Google Scholar 

  • Liang J, Liu J, Yuan X, Zeng G, Lai X, Li X, Wu H, Yuan Y, Li F (2015) Spatial and temporal variation of heavy metal risk and source in sediments of Dongting Lake wetland, mid-south China. J Environ Sci Health Part a 50:100–108

    Article  CAS  Google Scholar 

  • Long ER, MacDonald DD (1998) Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Hum Ecol Risk Assess 4(5):1019–1039

    Article  Google Scholar 

  • Lopez-Sanchez JF, Rubio R, Rauret G (1993) Comparison of two sequential extraction procedures for trace metal partitioning in sediments. Int J Environ Anal Chem 51(1–4):113–121

    Article  CAS  Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    Article  CAS  Google Scholar 

  • Martin JM, Meybeck M (1979) Elemental mass-balance of mineral carried by major world rivers. Mar Chem 7:173–206

    Article  CAS  Google Scholar 

  • Miller WP, Mc Fee WW, Kelly JM (1983) Mobility and retention of heavy metals in sandy soils. J Environ Qual 12(4):579–584

    Article  CAS  Google Scholar 

  • Mohiuddin KM, Ogawa Y, Zakir HM, Otomo K, Shikazono N (2011) Trace elements contamination in water and sediments of an urban river in a developing country. Int J Environ Sci Technol 8:723–736

    Article  CAS  Google Scholar 

  • Muller G (1979) Schwermetalle in den sediments des Rheins-Veranderungen Seit 1971. Umschau 79:778–783

    Google Scholar 

  • Nasrabadi T, Ruegner H, Sirdari ZZ, Schwientek M, Grathwohl P (2016) Using total suspended solids (TSS) and turbidity as proxies for evaluation of metal transport in river water. Appl Geochem 68:1–9

    Article  CAS  Google Scholar 

  • Nasrabadi T, Ruegner H, Schwientek M, Bennett J, Fazel Valipour S, Grathwohl P (2018) Bulk metal concentrations versus total suspended solids in rivers: time-invariant & catchment-specific relationships. PLoS ONE 13(1):e0191314

    Article  Google Scholar 

  • Nasrabadi T, Soodarjani AE, Karbassi A, Baghdadi M (2022) Role of salinity and aeration on flocculation and remobilization of metals during estuarine mixing. Environ Earth Sci 81(10):1–8

    Article  Google Scholar 

  • Nasrabadi T, Bidhendi GN, Karbassi AR, Mehrdadi N(2010a) Evaluating the efficiency of sediment metal pollution indices in interpreting the pollution of Haraz River sediments, southern Caspian Sea basin. Environmental monitoring and assessment. 171(1–4): 395–410.

  • NasrabadiT BGN, Karbassi AR, Mehrdadi N (2010b) Partitioning of metals in sediments of the Haraz River (Southern Caspian Sea basin). Environ Earth Sci 59(5):1111–1117

    Article  Google Scholar 

  • Pertsemli E, Voutsa D (2007) Distribution of heavy metals in Lakes Doirani andKerkini. Northern Greece J Hazardous Material 148:529–537

    Article  CAS  Google Scholar 

  • Salomons W, Förstner U (1980) Trace metal analysis on polluted sediments: part II: evaluation of environmental impact. Environ Technol 1(11):506–517

    CAS  Google Scholar 

  • Shaheen SM, El-Naggar A, Antoniadis V, Moghanm FS, Zhang Z, Tsang DCW, Ok YS, Rinklebe J (2020) Release of toxic elements in fishpond sediments under dynamic redox conditions: assessing the potential environmental risk for a safe management of fisheries systems and degraded waterlogged sediments. J Environ Manage 255:109778

    Article  CAS  Google Scholar 

  • Shariati S, Pourbabaee AA, Alikhani HA (2019) Investigation of heavy metal contamination in the surface sediments of Anzali Wetland in North of Iran. Pollution 5(1):211–224

    CAS  Google Scholar 

  • Talebi M, Tabatabaei BES, Akbarzadeh H (2019) Hyperaccumulation of Cu, Zn, Ni, and Cd in Azolla species inducing expression of methallothionein and phytochelatin synthase genes. Chemosphere 230:488–497

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PG, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51(7):844–851

    Article  CAS  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of Earth’s crust. Bull Geol Soc Am 72:175–192

    Article  CAS  Google Scholar 

  • Vatandoost M, Naghipour D, Omidi S, Ashrafi SD (2018) Survey and mapping of heavy metals in groundwater resources around the region of the Anzali International Wetland; a dataset. Data Brief 18:463–469

    Article  Google Scholar 

  • Vosoogh A, Saeedi M, Lak R (2016) Heavy metals relationship with water and size-fractionated sediments in rivers using canonical correlation analysis (CCA) case study, rivers of south western Caspian Sea. Environ Monitoring Assess 188:603

    Article  Google Scholar 

  • Vosoogh A, Saeedi M, Lak R (2017) Metal fractionation and pollution risk assessment of different sediment sizes in three major southwestern rivers of Caspian Sea. Environmental Earth Sciences 76:292

    Article  Google Scholar 

  • Xu F, Hu B, Dou Y, Song Z, Liu X, Yuan S, Sun Z, Li A, Yin X(2018)Prehistoric heavy metal pollution on the continental shelf off Hainan Island, South China Sea: from natural to anthropogenic impacts around 4.0 kyr BP. The Holocene.

  • Yancheshmeh RA, Bakhtiari AR, Mortazavi S(2014)Savabieasfahani, M., Sediment PAH: contrasting levels in the Caspian Sea and Anzali Wetland. Marine pollution bulletin.84(1–2):391–400.

  • Ye H, Zang S, Xiao H, Zhang L (2015) Speciation and ecological risk of heavy metals and metalloid in the sediments of Zhalong Wetland in China. Int J Environ Sci Technol 12:115–124

    Article  CAS  Google Scholar 

  • Yong J, Jie Z, Liwei Z, Xiaoli L, DingdingW JL, Jing L (2017) Analysis of heavy metals in the surface sediments of shallow lakes in Nanjishan (Poyang Lake) NaturalWetland in China. J Environ Biol 38:561–570

    Article  Google Scholar 

  • Zamani-Ahmadmahmoodi R, Esmaili-Sari A, Mohammadi J, Bakhtiari AR, Savabieasfahani M (2013) Spatial distribution of cadmium and lead in the sediments of the western Anzali wetlands on the coast of the Caspian Sea (Iran). Mar Pollut Bull 74(1):464–470

  • Zamani-Ahmadmahmoodi R, Bakhtiari AR, Martín JAR (2014) Spatial relations of mercury contents in Pike (Esox lucius) and sediments concentration of the Anzali wetland, along the southern shores of the Caspian Sea. Iran Marine Pollut Bull 84(1–2):97–103

    Article  CAS  Google Scholar 

  • Zhang M, Chen G, Luo Z, Sun X, Xu J(2020)Spatiotemporal variation, seasonal variation, and potential risks of sedimentary heavy metals in a new artificial lagoon in eastern China, 2014–2019.Marine Pollution Bulletin. 157 : 111370

  • Zolfaghari G (2018) Risk assessment of mercury and lead in fish species from Iranian international wetlands. MethodsX 5:438–447

    Article  Google Scholar 

Download references

Funding

Authors would like to thank Department of Environment, Guilan Province for providing financial help (grant No. DOE14155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Touraj Nasrabadi.

Ethics declarations

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrabadi, T., Vosoogh, A., Tajziehchi, S. et al. Comprehensive Scheme for Evaluation of Potentially Toxic Elements (PTEs) Pollution in Surface Sediments of Wetlands, Case Study: Anzali Wetland. Int J Environ Res 16, 96 (2022). https://doi.org/10.1007/s41742-022-00478-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41742-022-00478-7

Keywords

Navigation