Skip to main content
Log in

Investigation of Leachate Characteristics in Field-Scale Landfill Test Cells

  • Research paper
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

This paper evaluates leachate recirculation and the impact of aeration on waste decomposition rate by means of leachate quality and quantity in field-scale landfill test cells. Four landfill test cells with the dimensions of 20 m × 40 m × 5 m were constructed in Komurcuoda Sanitary Landfill, Istanbul, Turkey. Solid wastes representing Istanbul Asian side waste characteristics were landfilled in the test cells and the test cells were operated simulating anaerobic landfilling (AN-1), leachate-recirculated anaerobic landfilling (AN-2), semi-aerobic landfilling (A-1) and aerobic landfilling (A-2) methods. Alternative landfilling methods for accelerating solid waste stabilization in landfills were investigated by means of leachate quantity and quality. The study indicated that aeration (forced or natural) and leachate recirculation accelerate the biodegradation rate of the waste. High biodegradation rates of MSW eventually provide a reduction in the contaminant life span of the landfill and decrease the cost of long-term monitoring. Results show an important and rapid development in leachate quality with a reduction in the treatment costs in aerobic landfill sites. Many important advantages can thus be achieved especially in the aerobic or semi-aerobic landfill sites noting that leachate recirculation seems to be an effective solution to reduce the stabilization time and provide in situ treatment of leachate when the aerobic landfilling cannot be applicable.

Article Highlights

  • Comparison of four different field-scale test cells: anaerobic, leachate recirculation anaerobic, semi-anaerobic, and aerobic landfilling.

  • Aerobic test cells exhibit a higher rate of biodegradation.

  • Leachate recirculation to anaerobic landfills accelerates the rate of biological degradation of solid waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agdag ON, Sponza DT (2004) Effect of aeration on the performance of a simulated landfilling reactor stabilizing municipal solid wastes. J. Environ Sci Health Part A Toxic Hazard Subst Environ Eng 3:2955–2972

    Article  Google Scholar 

  • Al-Sabahi E, AbdulRahim S, Zuhairi W, AlNozail F, Alshaebi F (2009) Leachate composition and groundwater pollution at municipal solid waste landfill of Ibb city, Yemen. Sains Malays 38(3):295–304

    Google Scholar 

  • Andreottola P, Cannas P (1992) Chemical and biological characteristics of landfill leachate. In: Christensen TH, Cossu R, Stegmann R (eds) Landfilling of waste: leachate. Chapman & Hall, London, pp 65–88

    Google Scholar 

  • APHA (American Public Health Association) (2005) Standard methods for the examination of water and wastewater, 21st edn. (Washington DC)

  • Aziz SQ, Aziz HA, Yusoff MS, Bashir MJ, Umar M (2010) Leachate characterization in semi-aerobic and anaerobic sanitary landfills: a comparative study. J Environ Manag 91:2608–2614

    Article  CAS  Google Scholar 

  • Bae W, Kim S, Lee J, Chung J (2019) Effect of leachate circulation with ex situ nitrification on waste decomposition and nitrogen removal for early stabilization of fresh refuse landfill. J Hazard Mater

  • Bahaa EW (2005) The migration of inorganic contaminants from landfill sites into the soil and groundwater system. M.Sc. Thesis, Universiti Kebangsaan Malaysia

  • Bashir MJK, Aziz HA, Yusoff MS, Adlan MN (2010) Application of response surface methodology (RSM) for optimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ion exchange resin. Desalination 254:154–161

    Article  CAS  Google Scholar 

  • Baun DL, Christensen TH (2004) Speciation of heavy metals in landfill leachate: a review. Waste Manage Res 22:3–23

    Article  CAS  Google Scholar 

  • Bejgarn S, MacLeod M, Bogdal C, Breitholtz M (2015) Toxicity of leachate from weathering plastics: an exploratory screening study with Nitocra spinipes. Chemosphere 132:114–119

    Article  CAS  Google Scholar 

  • Bilgili MS, Demir A, Ozkaya B (2006) Quality and quantity of leachate in aerobic pilot-scale landfills. Environ Manage 38(2):189–196

    Article  Google Scholar 

  • Bilgili MS, Demir A, Ozkaya B (2007a) Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes. J Hazard Mater 143:177–183

    Article  CAS  Google Scholar 

  • Bilgili MS, Demir A, Ince M, Ozkaya B (2007b) Metal concentrations of simulated aerobic and anaerobic pilot scale landfill reactors. J Hazard Mater 145:186–194

    Article  CAS  Google Scholar 

  • Bilgili MS, Top S, Sekman E, Varank G, Demir A (2012) Aerobic landfill application in developing countries: a case study. In: International exhibition and conference, 28–31 March 2012, Kharkiv, Ukraine. https://waste.ua/eco/2012/municipal-waste/landfill/

  • Borglin SE, Hazen TC, Oldenburg CM, Zawislanski PT (2004) Comparison of aerobic and anaerobic biotreatment of municipal solid waste. J Air Waste Manag Assoc 54:815–822

    Article  CAS  Google Scholar 

  • Bozkurt S, Moreno L, Neretnieks I (1999) Long-term fate of organics in waste deposits and its effect on metal release. Sci Total Environ 228(2–3):135–152

    Article  CAS  Google Scholar 

  • Burton SAQ, Watson-Craik IA (1998) Ammonia and nitrogen fluxes in landfill sites: applicability to sustainable landfilling. Waste Manage Res 16:41–53

    Article  CAS  Google Scholar 

  • Calace N, Liberatori A, Petronio BM, Pietroletti M (2001) Characteristics of different molecular weight fractions of organic matter in landfill leachate and their role in soil sorption of heavy metals. Environ Pollut 113:331–339

    Article  CAS  Google Scholar 

  • Chan GYS, Chub LM, Wong MH (2002) Effects of leachate recirculation on biogas production from landfill co-disposal of municipal solid waste, sewage sludge and marine sediment. Environ Pollut 118:393–399

    Article  CAS  Google Scholar 

  • Chong TL, Matsufuji Y, Hassan MN (2005) Implementation of the semi-aerobic landfill system (Fukuoka method) in developing countries: a Malaysia cost analysis. Waste Manage 25:702–711

    Article  Google Scholar 

  • Christensen JB, Christensen TH (1999) Complexation of Cd, Ni, and Zn by DOC in polluted groundwater: a comparison of approaches using resin exchange, aquifer material sorption, and computer speciation models (WHAM and MINTEQA2). Environ Sci Technol 33:3857–3863

    Article  CAS  Google Scholar 

  • Christensen JB, Christensen TH (2000) The effect of pH on the complexation of Cd, Ni, and Zn by dissolved organic carbon from leachate polluted groundwater. Water Res 34:3743–3754

    Article  CAS  Google Scholar 

  • Christensen TH, Kjeldsen P, Albrechtsen HJ, Heron G, Nielsen PH, Bjerg PL, Holm PE (1994) Attenuation of landfill leachate pollutants in aquifers. Crit Rev Environ Sci Technol 24:119–202

    Article  CAS  Google Scholar 

  • Christensen B, Jensen DL, Gron C, Filip Z, Christensen TH (1998) Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater. Water Resour 32:125–135

    CAS  Google Scholar 

  • Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen HJ, Heron G (2001) Biogeochemistry of landfill leachate plumes. Appl Geochem 16(7–8):659–718

    Article  CAS  Google Scholar 

  • Chu LM, Cheung KM, Wong MH (1994) Variations in the chemical properties of landfill leachate. Environ Manage 18:105–117

    Article  Google Scholar 

  • Ciner F, Sarıoglu M (2006) Determination of inert chemical oxygen demand (COD) fractions of Cumhuriyet University wastewater. Glob NEST J 8(1):31–36

    Google Scholar 

  • Cossu R, Rossetti D (2003) Pilot scale experiences with sustainable landfilling based on the PAF conceptual model. Paper presented at proceedings of the ninth international waste management and landfill symposium, Cagliari, Italy

  • Cossu R, Raga R, Rossetti D (2003) The PAF model: an integrated approach for landfill sustainability. Waste Manage 23:37–44

    Article  CAS  Google Scholar 

  • Crawford JF, Smith PG (2016) Landfill technology. Elsevier, New York

    Google Scholar 

  • Das C, Smith MC, Gattie DK, Boothe DDH (2002) Stability and quality of municipal solid waste compost from a landfill aerobic bioreduction process. Adv Environ Res 6:401–409

    Article  CAS  Google Scholar 

  • Davis ML, Cornwell DA (2008) Introduction to environmental engineering. In: International Edition, fourth ed. McGraw Hill, New York

  • Demir A, Bilgili MS, Ozkaya B (2004) Effect of leachate recirculation on refuse decomposition rates at landfill site: a case study. Int J Environ Pollut 21:175–187

    Article  CAS  Google Scholar 

  • Diaz LF, Savage GM, Eggerth LL, Golueke CG (1993) Composting and recycling municipal solid waste. Lewis Publishers, Florida

    Google Scholar 

  • Dong L, Wang Q, Li Y, Huang SH (2000) The research of acceleration for stabilization in the landfill site. China Environ Sci 20:461–464

    CAS  Google Scholar 

  • Ehrig HJ, Scheelhaase T (1993) Pollution potential and long term behavior of sanitary landfills. Paper presented at proceedings of the fourth international landfill symposium, Cagliari, Italy

  • Erses AS, Onay TT, Yenigun O (2008) Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Biores Technol 99(13):5418–5426

    Article  CAS  Google Scholar 

  • Fairweather RJ, Barlaz MA (1998) Hydrogen sulfide production during decomposition of landfill inputs. J Environ Eng 124(4):363–381

    Article  Google Scholar 

  • Farquhar GJ, Rovers FA (1973) Gas production during refuse decomposition. Water Air Soil Pollut 2:483–495

    Article  CAS  Google Scholar 

  • Foul AA, Aziz HA, Isa MH, Hung YT (2009) Primary treatment of anaerobic landfill leachate using activated carbon and limestone: batch and column studies. Int J Environ Waste Manag 4(3–4):282–298

    Article  Google Scholar 

  • Fueyo G, Gutierrez A, Berrueta J (2003) Kinetics of anaerobic treatment of landfill leachates combined with urban wastewater. Waste Manage Res 21:145–154

    Article  CAS  Google Scholar 

  • Giannis A, Makripodis G, Simantiraki F, Somara M, Gidarakos E (2008) Monitoring operational and leachate characteristics of an aerobic simulated landfill bioreactor. Waste Manage 28:1346–1354

    Article  CAS  Google Scholar 

  • Haarstad K, Mæhlum T (2007) Electrical conductivity and chloride reduction in leachate treatment systems. J Environ Eng 133(6):659–664

    Article  CAS  Google Scholar 

  • Hudgins M, Harper S (1999) Operational characteristics of two aerobic landfill systems. In: Paper presented at proceedings of the seventh international waste management and landfill symposium, Cagliari, Italy

  • Ishigaki T, Sugano W, Nakanishi A, Tadeta M, Ike M, Fujita M (2003) Application of bioventing to waste landfill for improving waste settlement and leachate quality—a lab scale model study. J Solid Waste Technol Manag 29(4):230–238

    CAS  Google Scholar 

  • Isidori M, Lavorgna M, Nardelli A, Parrella A (2003) Toxicity identification evaluation of leachates from municipal solid waste landfills: a multispecies approach. Chemosphere 52(1):85–94

    Article  CAS  Google Scholar 

  • Jun D, Yongsheng Z, Henry RK, Mei H (2007) Impact of aeration and active sludge addition on leachate recirculation bioreactor. J Hazard Mater 147:240–248

    Article  CAS  Google Scholar 

  • Kim H (2005) Comparative studies of aerobic and anaerobic landfills using simulated landfill lysimeters. Ph.D. Thesis, University of Florida, USA

  • Kim Y, Yang GJ (2002) A novel design for anaerobic chemical oxygen demand and nitrogen removal from leachate in a semiaerobic landfill. J Air Waste Manag Assoc 52:1139–1152

    Article  CAS  Google Scholar 

  • Kimmel GE, Braids OC (1980) Leachate plumes in groundwater from Babylon and Islip Landfills. Geological Survey, Geological Survey Professional Paper, Long Island, New York, Washington DC

  • Kjeldsen P, Christophersen M (2001) Composition of leachate from old landfills in Denmark. Waste Manage Res 19:249–256

    Article  CAS  Google Scholar 

  • Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Environ Sci Technol 32:297–336

    Article  CAS  Google Scholar 

  • Kylefors K, Lagerkvist A (1997) Changes of leachate quality with degradation phases and time. Paper presented at proceedings of Sardinia 97, sixth international waste management and landfill symposium, CISA-Sanitary Environmental Engineering Centre, Cagliari, Italy

  • Mehta RC, Barlaz MA, Yazdani R (2002) Refuse decomposition in the presence and absence of leachate recirculation. J Environ Eng 128:228–236

    Article  CAS  Google Scholar 

  • Mohee R, Unmar GD, Mudhoo A, Khadoo P (2008) Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions. Waste Manage 28(9):1624–1629

    Article  CAS  Google Scholar 

  • Morello L, Raga R, Lavagnolo MC, Pivato A, Ali M, Yue D, Cossu R (2017) The S. An. A.® concept: semi-aerobic, anaerobic, aerated bioreactor landfill. Waste Manag 67:193–202

    Article  CAS  Google Scholar 

  • Nag M, Shimaoka T, Komiya T (2018) Influence of operations on leachate characteristics in the aerobic–anaerobic landfill method. Waste Manage 78:698–707

    Article  CAS  Google Scholar 

  • O’Keefe DM, Chynoweth DP (2000) Influence of phase separation, leachate recycle and aeration on treatment of municipal solid waste in simulated landfill cells. Biores Technol 72(1):55–66

    Article  Google Scholar 

  • Oman CB, Junestedt C (2008) Chemical characterization of landfill leachates—400 parameters and compounds. Waste Manage 28(10):1876–1891

    Article  Google Scholar 

  • Onay TT, Pohland FG (1998) In situ nitrogen management in controlled bioreactor landfills. Water Res 32:1383–1392

    Article  CAS  Google Scholar 

  • Park JK, Wang J, Novotny G (1997) Wastewater characterization for evaluation of biological phosphorus removal. Research Report 174, Wisconsin Department of Natural Resources

  • Pohland FG, Kim JC (2000) Microbially mediated attenuation potential of landfill bioreactor systems. Water Sci Technol 41:247–254

    Article  CAS  Google Scholar 

  • Pohland FG, Cross WH, Gould JP, Reinhart DR (1993) The behavior and assimilation of organic and inorganic priority pollutants codisposed with municipal refuse. Research Paper, University of Pittsburgh, USA

  • Price GA, Barlaz MA, Haterb GR (2003) Nitrogen management in bioreactor landfills. Waste Manage 23:675–688

    Article  CAS  Google Scholar 

  • Qifei H, Yufei Y, Xiangrui P, Qi W (2008) Evolution on qualities of leachate and landfill gas in the semi-aerobic landfill. J Environ Sci 20:499–504

    Article  Google Scholar 

  • Read AD, Hudgins M, Phillips P (2001a) Perpetual landfilling through aeration of the waste mass; lessons from test cells in Georgia (USA). Waste Manage 21:617–629

    Article  CAS  Google Scholar 

  • Read AD, Hudgins M, Harper S, Phillips P, Morris J (2001b) The successful demonstration of aerobic landfilling the potential for a more sustainable solid waste management approach. Conserv Recycl 32:115–146

    Article  Google Scholar 

  • Reinhart DR (1996) Full-scale experiences with leachate recirculating landfills: case studies. Waste Manage Res 14:347–365

    Article  CAS  Google Scholar 

  • Reinhart DR, Al-Yousfi AB (1996) The impact of leachate recirculation on municipal solid waste landfill operating characteristics. Waste Manage Res 14:337–346

    Article  CAS  Google Scholar 

  • Reinhart DR, Grosh C (1998) Analysis of Florida MSW landfill leachate quality. Report 97-3. Gainesville, Florida: University of Central Florida, Civil and Environmental Engineering Department

  • Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150(3):468–493

    Article  CAS  Google Scholar 

  • Revans A, Ross D, Gregory B, Meadows M, Harries C, Gronow J (1999) Long term fate of metals in landfill. Paper presented at proceedings of the seventh international waste management and landfill symposium S. Margherita di Pula, Cagliari, Italy

  • Rich C, Gronow J, Voulvoulis N (2008) The potential for aeration of MSW landfills to accelerate completion. Waste Manage 28:1039–1048

    Article  CAS  Google Scholar 

  • Ritzkowski M, Stegmann R (2012) Landfill aeration worldwide: concepts, indications and findings. Waste Manage 32(7):1411–1419

    Article  CAS  Google Scholar 

  • Robinson HD (1995) The technical aspects of controlled waste management; a review of the composition of leachates from domestic wastes in landfill sites. Report for the UK Department of the Environment, Waste Science and Research, Aspinwall and Company, Ltd., London, UK

  • Sang NN, Soda S, Sei K, Ike M (2003) Effect of aeration on stabilization of organic solid waste and microbial population dynamics in lab-scale landfill bioreactors. J Biosci Bioeng 106:425–432

    Article  CAS  Google Scholar 

  • Shimaoka T, Matsufuji Y, Hanashima M (2000) Characteristic and mechanism of semi-aerobic landfill on stabilization of solid waste. Paper presented at 1st intercontinental landfill research symposia, Lulea, Sweden

  • Shou-liang H, Bei-dou X, Hai-chan Y, Shi-lei F, Jing S, Hong-liang L (2008) In situ simultaneous organics and nitrogen removal from recycled landfill leachate using an anaerobic–aerobic process. Biores Technol 99:6456–6463

    Article  CAS  Google Scholar 

  • Slack RJ, Gronow JR, Voulvoulis N (2005) Household hazardous waste in municipal landfills: contaminants in leachate. Sci Total Environ 227(1–3):119–137

    Article  CAS  Google Scholar 

  • Summerfelt ST, Davidson J, Waldrop T (2003) Evaluation of full-scale carbon dioxide stripping columns in a coldwater recirculating system. Aquacult Eng 28:155–169

    Article  Google Scholar 

  • Tatsi AA, Zouboulis AI (2002) A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece). Adv Environ Res 6(3):207–219

    Article  CAS  Google Scholar 

  • Themelis NJ, Kim YH (2002) Material and energy balances in a large-scale aerobic bioconversion cell. Waste Manage Res 20:234–242

    Article  CAS  Google Scholar 

  • Top S, Akkaya GK, Demir A, Yildiz S, Balahorli V, Aykut NO, Bilgili MS (2019) Investigation of solid waste characteristics in field-scale landfill test cells. Glob Nest J 21(2):153–162

    Article  Google Scholar 

  • Umar M, Aziz HA, Yusoff MS (2010) Variability of parameters involved in leachate pollution index and determination of LPI from four landfills in Malaysia. Int J Chem Eng ID 747953, 6

  • Uygur A, Kargı F (2004) Biological nutrient removal from pre-treated landfill leachate in a sequencing batch reactor. J Environ Manag 71(1):9–14

    Article  Google Scholar 

  • Vazquez IV, Varaldo HMG (2009) Alkalinity and high total solids affecting H2 production from organic solid waste by anaerobic consortia. Int J Hydrogen Energy 34:3639–3646

    Article  CAS  Google Scholar 

  • Wang Q, Matsufuji Y, Dong L, Huang Q, Hirano F, Tanaka A (2006) Research on leachate recirculation from different types of landfills. Waste Manage 26:815–824

    Article  CAS  Google Scholar 

  • Yasushi M, Masataka H (1997) Characteristic and mechanism of semi-aerobic landfill on stabilization of solid waste. Paper presented at proceedings of the first Korea–Japan society of solid waste management, pp 87–94

  • Yoshida M, Ahmed S, Nebil SG (2002) Characterization of leachate from Henchir El Yahoudia close landfill. Water Environ Res 1(2):129–142

    Google Scholar 

  • Youcai Z, Jianggying L, Renhua H, Guowei G (2000) Long-term monitoring and prediction for leachate concentrations in Shanghai refuse landfill. Water Air Soil Pollut 122:281–297

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This search has been supported by The Scientific and Technological Research Council of Turkey (TUBITAK–CAYDAG) (Project number: 106Y228). The authors wish to acknowledge Istanbul Environmental Management Industry and Trade Inc. (ISTAC) for their support during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Sinan Bilgili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Top, S., Akkaya, G.K., Demir, A. et al. Investigation of Leachate Characteristics in Field-Scale Landfill Test Cells. Int J Environ Res 13, 829–842 (2019). https://doi.org/10.1007/s41742-019-00217-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41742-019-00217-5

Keywords

Navigation